基于8×8 DCT变换的图像压缩MATLAB实现
将图像分割为8×8块,进行DCT变换、量化和压缩,最后重建图像并评估压缩效果。
function dctImageCompression(imagePath, quality)% 读取图像if nargin < 1imagePath = 'cameraman.tif'; % 默认图像endif nargin < 2quality = 50; % 默认压缩质量(0-100)end% 读取图像并转换为双精度originalImage = imread(imagePath);if size(originalImage, 3) == 3originalImage = rgb2gray(originalImage);endoriginalImage = im2double(originalImage);% 显示原始图像figure('Name', 'DCT图像压缩', 'Position', [100, 100, 1000, 500]);subplot(2, 3, 1);imshow(originalImage);title(sprintf('原始图像 (%dx%d)', size(originalImage,2), size(originalImage,1)));% 定义8×8量化矩阵 (基于JPEG标准)quantizationMatrix = [16 11 10 16 24 40 51 61;12 12 14 19 26 58 60 55;14 13 16 24 40 57 69 56;14 17 22 29 51 87 80 62;18 22 37 56 68 109 103 77;24 35 55 64 81 104 113 92;49 64 78 87 103 121 120 101;72 92 95 98 112 100 103 99];% 调整量化质量 (quality: 1-100)if quality <= 0quality = 1;elseif quality > 100quality = 100;endif quality < 50scalingFactor = 5000 / quality;elsescalingFactor = 200 - 2 * quality;endquantizationMatrix = floor((quantizationMatrix * scalingFactor + 50) / 100);quantizationMatrix(quantizationMatrix < 1) = 1;% 填充图像使其尺寸为8的倍数[rows, cols] = size(originalImage);paddedRows = ceil(rows / 8) * 8;paddedCols = ceil(cols / 8) * 8;paddedImage = padarray(originalImage, [paddedRows-rows, paddedCols-cols], 'replicate', 'post');% 初始化变量dctCoeffs = zeros(size(paddedImage));quantizedCoeffs = zeros(size(paddedImage));reconstructedImage = zeros(size(paddedImage));% 压缩率统计totalCoeffs = numel(paddedImage);nonZeroCoeffs = 0;% 处理每个8×8块for i = 1:8:paddedRowsfor j = 1:8:paddedCols% 提取当前块block = paddedImage(i:i+7, j:j+7);% DCT变换dctBlock = dct2(block);dctCoeffs(i:i+7, j:j+7) = dctBlock;% 量化quantBlock = round(dctBlock ./ quantizationMatrix);quantizedCoeffs(i:i+7, j:j+7) = quantBlock;% 统计非零系数nonZeroCoeffs = nonZeroCoeffs + nnz(quantBlock);% 反量化dequantBlock = quantBlock .* quantizationMatrix;% IDCT重建reconstructedImage(i:i+7, j:j+7) = idct2(dequantBlock);endend% 裁剪回原始尺寸reconstructedImage = reconstructedImage(1:rows, 1:cols);% 计算压缩率和PSNRcompressionRatio = totalCoeffs / nonZeroCoeffs;mse = mean((originalImage(:) - reconstructedImage(:)).^2);psnr = 10 * log10(1 / mse);% 显示结果subplot(2, 3, 2);imshow(paddedImage);title('填充后的图像');subplot(2, 3, 3);imshow(log(abs(dctCoeffs) + 1), []);colormap(jet); colorbar;title('DCT系数 (对数尺度)');subplot(2, 3, 4);imshow(abs(quantizedCoeffs), [0, max(quantizedCoeffs(:))]);colormap(jet); colorbar;title('量化后的系数');subplot(2, 3, 5);imshow(reconstructedImage);title(sprintf('重建图像 (质量: %d%%)', quality));subplot(2, 3, 6);diffImage = abs(originalImage - reconstructedImage) * 5; % 放大误差imshow(diffImage);title(sprintf('误差图 (x5放大)'));% 显示压缩信息fprintf('图像尺寸: %d x %d\n', cols, rows);fprintf('压缩质量: %d%%\n', quality);fprintf('压缩率: %.2f:1\n', compressionRatio);fprintf('非零系数比例: %.2f%%\n', (nonZeroCoeffs/totalCoeffs)*100);fprintf('PSNR: %.2f dB\n', psnr);fprintf('MSE: %.6f\n', mse);% 保存结果saveas(gcf, 'dct_compression_result.png');
end
示例
% 示例1:使用默认图像和默认质量(50%)
dctImageCompression();% 示例2:指定图像和质量
dctImageCompression('peppers.png', 75);% 示例3:高质量压缩
dctImageCompression('mandril.tif', 90);% 示例4:低质量高压缩
dctImageCompression('satellite.jpg', 10);
算法说明
1. DCT变换核心原理
- 将8×8图像块转换为频域表示
- 公式:F(u,v)=14C(u)C(v)∑x=07∑y=07f(x,y)cos((2x+1)uπ16)cos((2y+1)vπ16)F(u,v) = \frac{1}{4}C(u)C(v)\sum_{x=0}^{7}\sum_{y=0}^{7}f(x,y)\cos\left(\frac{(2x+1)u\pi}{16}\right)\cos\left(\frac{(2y+1)v\pi}{16}\right)F(u,v)=41C(u)C(v)∑x=07∑y=07f(x,y)cos(16(2x+1)uπ)cos(16(2y+1)vπ)
- 其中 C(u)={1/2if u=01otherwiseC(u) = \begin{cases} 1/\sqrt{2} & \text{if } u=0 \\1 & \text{otherwise}\end{cases}C(u)={1/21if u=0otherwise
2. 量化过程
- 使用JPEG标准量化矩阵作为基础
- 根据质量因子调整量化步长:
- 高质量 → 小步长 → 保留更多细节
- 低质量 → 大步长 → 更高压缩率
3. 压缩机制
- 高频分量通常具有较小值,量化后变为零
- 使用行程编码(RLE)和霍夫曼编码可进一步压缩(本实现中省略)
- 仅存储非零系数可显著减少数据量
4. 性能评估
- 压缩率:原始数据量 / 压缩后数据量
- PSNR:峰值信噪比,衡量重建质量
PSNR=10log10(MAX2MSE)PSNR = 10 \log_{10}\left(\frac{MAX^2}{MSE}\right)PSNR=10log10(MSEMAX2) - MSE:均方误差
MSE=1MN∑i=0M−1∑j=0N−1[I(i,j)−K(i,j)]2MSE = \frac{1}{MN}\sum_{i=0}^{M-1}\sum_{j=0}^{N-1}[I(i,j)-K(i,j)]^2MSE=MN1∑i=0M−1∑j=0N−1[I(i,j)−K(i,j)]2
参考代码 把图像分成8×8的图像块进行DCT变换压缩 youwenfan.com/contentcsc/83441.html
参数
-
量化矩阵:控制不同频率分量的压缩程度
-
质量因子:0-100之间的值,控制整体压缩质量
- 90+:接近无损压缩
- 70-80:良好视觉质量
- 50:中等压缩
- 30以下:明显压缩伪影
-
块尺寸:8×8是JPEG标准,平衡计算效率和压缩性能
此实现展示了DCT压缩的核心原理,实际应用中可结合熵编码和更先进的量化策略进一步提升压缩效率。