当前位置: 首页 > news >正文

DAY 37 早停策略和模型权重的保存

知识点回顾:

  1. 过拟合的判断:测试集和训练集同步打印指标
  2. 模型的保存和加载
    1. 仅保存权重
    2. 保存权重和模型
    3. 保存全部信息checkpoint,还包含训练状态
  3. 早停策略

先复习之前的代码

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
from tqdm import tqdm  # 导入tqdm库用于进度条显示
import warnings
warnings.filterwarnings("ignore")  # 忽略警告信息# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型并移至GPU
model = MLP().to(device)# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 20000  # 训练的轮数# 用于存储每100个epoch的损失值和对应的epoch数
losses = []
epochs = []start_time = time.time()  # 记录开始时间# 创建tqdm进度条
with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:# 训练模型for epoch in range(num_epochs):# 前向传播outputs = model(X_train)  # 隐式调用forward函数loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()# 记录损失值并更新进度条if (epoch + 1) % 200 == 0:losses.append(loss.item())epochs.append(epoch + 1)# 更新进度条的描述信息pbar.set_postfix({'Loss': f'{loss.item():.4f}'})# 每1000个epoch更新一次进度条if (epoch + 1) % 1000 == 0:pbar.update(1000)  # 更新进度条# 确保进度条达到100%if pbar.n < num_epochs:pbar.update(num_epochs - pbar.n)  # 计算剩余的进度并更新time_all = time.time() - start_time  # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')# 可视化损失曲线
plt.figure(figsize=(10, 6))
plt.plot(epochs, losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.grid(True)
plt.show()# 在测试集上评估模型,此时model内部已经是训练好的参数了
# 评估模型
model.eval() # 设置模型为评估模式
with torch.no_grad(): # torch.no_grad()的作用是禁用梯度计算,可以提高模型推理速度outputs = model(X_test)  # 对测试数据进行前向传播,获得预测结果_, predicted = torch.max(outputs, 1) # torch.max(outputs, 1)返回每行的最大值和对应的索引#这个函数返回2个值,分别是最大值和对应索引,参数1是在第1维度(行)上找最大值,_ 是Python的约定,表示忽略这个返回值,所以这个写法是找到每一行最大值的下标# 此时outputs是一个tensor,p每一行是一个样本,每一行有3个值,分别是属于3个类别的概率,取最大值的下标就是预测的类别# predicted == y_test判断预测值和真实值是否相等,返回一个tensor,1表示相等,0表示不等,然后求和,再除以y_test.size(0)得到准确率# 因为这个时候数据是tensor,所以需要用item()方法将tensor转化为Python的标量# 之所以不用sklearn的accuracy_score函数,是因为这个函数是在CPU上运行的,需要将数据转移到CPU上,这样会慢一些# size(0)获取第0维的长度,即样本数量correct = (predicted == y_test).sum().item() # 计算预测正确的样本数accuracy = correct / y_test.size(0)print(f'测试集准确率: {accuracy * 100:.2f}%')#使用设备: cpu
#训练进度: 100%|██████████| 20000/20000 [00:06<00:00, 3252.53epoch/s, Loss=0.0618]
#Training time: 6.15 seconds#测试集准确率: 96.67%

训练集的loss在下降,但是有可能出现过拟合现象:模型过度学习了训练集的信息,导致在测试集上表现不理想。

所以很自然的,我们想同步打印测试集的loss,以判断是否出现过拟合现象。

过拟合的判断

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
from tqdm import tqdm  # 导入tqdm库用于进度条显示
import warnings
warnings.filterwarnings("ignore")  # 忽略警告信息# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型并移至GPU
model = MLP().to(device)# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 20000  # 训练的轮数# 用于存储每200个epoch的损失值和对应的epoch数
train_losses = [] # 存储训练集损失
test_losses = [] # 新增:存储测试集损失
epochs = []start_time = time.time()  # 记录开始时间# 创建tqdm进度条
with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:# 训练模型for epoch in range(num_epochs):# 前向传播outputs = model(X_train)  # 隐式调用forward函数train_loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()train_loss.backward()optimizer.step()# 记录损失值并更新进度条if (epoch + 1) % 200 == 0:# 计算测试集损失,新增代码model.eval()with torch.no_grad():test_outputs = model(X_test)test_loss = criterion(test_outputs, y_test)model.train()train_losses.append(train_loss.item())test_losses.append(test_loss.item())epochs.append(epoch + 1)# 更新进度条的描述信息pbar.set_postfix({'Train Loss': f'{train_loss.item():.4f}', 'Test Loss': f'{test_loss.item():.4f}'})# 每1000个epoch更新一次进度条if (epoch + 1) % 1000 == 0:pbar.update(1000)  # 更新进度条# 确保进度条达到100%if pbar.n < num_epochs:pbar.update(num_epochs - pbar.n)  # 计算剩余的进度并更新time_all = time.time() - start_time  # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')# 可视化损失曲线
plt.figure(figsize=(10, 6))
plt.plot(epochs, train_losses, label='Train Loss') # 原始代码已有
plt.plot(epochs, test_losses, label='Test Loss')  # 新增:测试集损失曲线
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Test Loss over Epochs')
plt.legend() # 新增:显示图例
plt.grid(True)
plt.show()# 在测试集上评估模型,此时model内部已经是训练好的参数了
# 评估模型
model.eval() # 设置模型为评估模式
with torch.no_grad(): # torch.no_grad()的作用是禁用梯度计算,可以提高模型推理速度outputs = model(X_test)  # 对测试数据进行前向传播,获得预测结果_, predicted = torch.max(outputs, 1) # torch.max(outputs, 1)返回每行的最大值和对应的索引correct = (predicted == y_test).sum().item() # 计算预测正确的样本数accuracy = correct / y_test.size(0)print(f'测试集准确率: {accuracy * 100:.2f}%')    #使用设备: cpu
#训练进度: 100%|██████████| 20000/20000 [00:06<00:00, 3245.61epoch/s, Train Loss=0.0633, #Test Loss=0.0578]
#Training time: 6.16 seconds#测试集准确率: 96.67%

实际上,打印测试集的loss和同步打印测试集的评估指标,是一个逻辑,但是打印loss可以体现在一个图中。

模型的保存和加载

深度学习中模型的保存与加载主要涉及参数(权重)和整个模型结构的存储,同时需兼顾训练状态(如优化器参数、轮次等)以支持断点续训。

仅保存模型参数(推荐)
  • 原理:保存模型的权重参数,不保存模型结构代码。加载时需提前定义与训练时一致的模型类。
  • 优点:文件体积小(仅含参数),跨框架兼容性强(需自行定义模型结构)。
# 保存模型参数
torch.save(model.state_dict(), "model_weights.pth")# 加载参数(需先定义模型结构)
model = MLP()  # 初始化与训练时相同的模型结构
model.load_state_dict(torch.load("model_weights.pth"))
# model.eval()  # 切换至推理模式(可选)# <All keys matched successfully>
保存模型+权重
  • 原理:保存模型结构及参数
  • 优点:加载时无需提前定义模型类
  • 缺点:文件体积大,依赖训练时的代码环境(如自定义层可能报错)。
# 保存整个模型
torch.save(model, "full_model.pth")# 加载模型(无需提前定义类,但需确保环境一致)
model = torch.load("full_model.pth")
model.eval()  # 切换至推理模式(可选)#MLP(
#  (fc1): Linear(in_features=4, out_features=10, bias=True)
#  (relu): ReLU()
#  (fc2): Linear(in_features=10, out_features=3, bias=True)
#)
保存训练状态(断点续训)
  • 原理:保存模型参数、优化器状态(学习率、动量)、训练轮次、损失值等完整训练状态,用于中断后继续训练。
  • 适用场景:长时间训练任务(如分布式训练、算力中断)。
# # 保存训练状态
# checkpoint = {
#     "model_state_dict": model.state_dict(),
#     "optimizer_state_dict": optimizer.state_dict(),
#     "epoch": epoch,
#     "loss": best_loss,
# }
# torch.save(checkpoint, "checkpoint.pth")# # 加载并续训
# model = MLP()
# optimizer = torch.optim.Adam(model.parameters())
# checkpoint = torch.load("checkpoint.pth")# model.load_state_dict(checkpoint["model_state_dict"])
# optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
# start_epoch = checkpoint["epoch"] + 1  # 从下一轮开始训练
# best_loss = checkpoint["loss"]# # 继续训练循环
# for epoch in range(start_epoch, num_epochs):
#     train(model, optimizer, ...)

早停法(early stop)

保存训练状态(断点续训)
  • 原理:保存模型参数、优化器状态(学习率、动量)、训练轮次、损失值等完整训练状态,用于中断后继续训练。
  • 适用场景:长时间训练任务(如分布式训练、算力中断)。

我们梳理下过拟合的情况

  • 正常情况:训练集和测试集损失同步下降,最终趋于稳定。

  • 过拟合:训练集损失持续下降,但测试集损失在某一时刻开始上升(或不再下降)。

如果可以监控验证集的指标不再变好,此时提前终止训练,避免模型对训练集过度拟合。----监控的对象是验证集的指标。这种策略叫早停法。

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
from tqdm import tqdm  # 导入tqdm库用于进度条显示
import warnings
warnings.filterwarnings("ignore")  # 忽略警告信息# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 将数据转换为PyTorch张量并移至GPU
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型并移至GPU
model = MLP().to(device)# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 20000  # 训练的轮数# 用于存储每200个epoch的损失值和对应的epoch数
train_losses = []  # 存储训练集损失
test_losses = []   # 存储测试集损失
epochs = []# ===== 新增早停相关参数 =====
best_test_loss = float('inf')  # 记录最佳测试集损失
best_epoch = 0                 # 记录最佳epoch
patience = 50                # 早停耐心值(连续多少轮测试集损失未改善时停止训练)
counter = 0                    # 早停计数器
early_stopped = False          # 是否早停标志
# ==========================start_time = time.time()  # 记录开始时间# 创建tqdm进度条
with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:# 训练模型for epoch in range(num_epochs):# 前向传播outputs = model(X_train)  # 隐式调用forward函数train_loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()train_loss.backward()optimizer.step()# 记录损失值并更新进度条if (epoch + 1) % 200 == 0:# 计算测试集损失model.eval()with torch.no_grad():test_outputs = model(X_test)test_loss = criterion(test_outputs, y_test)model.train()train_losses.append(train_loss.item())test_losses.append(test_loss.item())epochs.append(epoch + 1)# 更新进度条的描述信息pbar.set_postfix({'Train Loss': f'{train_loss.item():.4f}', 'Test Loss': f'{test_loss.item():.4f}'})# ===== 新增早停逻辑 =====if test_loss.item() < best_test_loss: # 如果当前测试集损失小于最佳损失best_test_loss = test_loss.item() # 更新最佳损失best_epoch = epoch + 1 # 更新最佳epochcounter = 0 # 重置计数器# 保存最佳模型torch.save(model.state_dict(), 'best_model.pth')else:counter += 1if counter >= patience:print(f"早停触发!在第{epoch+1}轮,测试集损失已有{patience}轮未改善。")print(f"最佳测试集损失出现在第{best_epoch}轮,损失值为{best_test_loss:.4f}")early_stopped = Truebreak  # 终止训练循环# ======================# 每1000个epoch更新一次进度条if (epoch + 1) % 1000 == 0:pbar.update(1000)  # 更新进度条# 确保进度条达到100%if pbar.n < num_epochs:pbar.update(num_epochs - pbar.n)  # 计算剩余的进度并更新time_all = time.time() - start_time  # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')# ===== 新增:加载最佳模型用于最终评估 =====
if early_stopped:print(f"加载第{best_epoch}轮的最佳模型进行最终评估...")model.load_state_dict(torch.load('best_model.pth'))
# ================================# 可视化损失曲线
plt.figure(figsize=(10, 6))
plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, test_losses, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Test Loss over Epochs')
plt.legend()
plt.grid(True)
plt.show()# 在测试集上评估模型
model.eval()
with torch.no_grad():outputs = model(X_test)_, predicted = torch.max(outputs, 1)correct = (predicted == y_test).sum().item()accuracy = correct / y_test.size(0)print(f'测试集准确率: {accuracy * 100:.2f}%')    #使用设备: cpu
#训练进度: 100%|██████████| 20000/20000 [00:05<00:00, 3387.31epoch/s, Train Loss=0.0607, #Test Loss=0.0529]
#Training time: 5.91 seconds#测试集准确率: 96.67%

上述早停策略的具体逻辑如下

  • 首先初始一个计数器counter。
  • 每 200 轮训练执行一次判断:比较当前损失与历史最佳损失。
    • 若当前损失更低,保存模型参数。
    • 若当前损失更高或相等,计数器加 1。
      • 若计数器达到最大容许的阈值patience,则停止训练。

之所以设置阈值patience,是因为训练过程中存在波动,不能完全停止训练。同时每隔固定的训练轮次都会保存模型参数,下次可以接着这里训练,缩小训练的范围。

我这里之所以没有触发早停策略,有以下几个原因:

  1. 测试集损失在训练中持续下降或震荡,但未出现连续 patience 轮不改善
  2. patience值过大,需要调小

实际上,在早停策略中,保存 checkpoint(检查点) 是更优选择,因为它不仅保存了模型参数,还记录了训练状态(如优化器参数、轮次、损失值等),一但出现了过拟合,方便后续继续训练。

@浙大疏锦行

http://www.lryc.cn/news/612211.html

相关文章:

  • 线程互斥与同步
  • 周鸿祎:AI 时代安全智能体,能否重塑数字安全格局?
  • 一个AI硬件项目经理的PMP实战笔记
  • OpenObserve非sql模式 query editor 中 xx like ‘|’报错如何处理
  • 芯片封装(DIP、SOP、QFP、QFN、BGA、LGA、PGA)
  • 从零开始的云计算生活——第三十八天,避坑落井,Docker容器模块
  • Spring Data MongoDB 教程:用 @Query 快速实现字段查询
  • 模型学习系列之精度
  • 应急响应-windows篇
  • JAVA中关于多线程的学习和使用
  • 猫头虎AI分享:Claude Opus 新版 4.1 在 SWE-bench Verified 上准确率达到了 74.5%,在多文件代码重构方面表现突出
  • [AI 生成] 大数据数仓面试题
  • AI巨模型对决2025:五强争霸,谁能称王?
  • C++音视频流媒体开发面试题:音视频基础
  • 企业知识库:RAG技术实现流程总览(一)
  • 控制服务和守护进程-systemctl
  • C语言route命令详解:网络路由管理的核心工具
  • MaxKB 使用 MCP 连接 Oracle (免安装 cx_Oracle 和 Oracle Instant Client)
  • 搭建SAP S/4HANA虚拟机的安装与配置指南
  • 基于最大似然估计的卡尔曼滤波与自适应模糊PID控制的单片机实现
  • jdk动态代理如何实现
  • 力扣经典算法篇-45-回文数(数字处理:求余+整除,字符串处理:左右指针)
  • Unity笔记(二)——Time、Vector3、位置位移、角度、旋转、缩放、看向
  • 【历史人物】【范仲淹】简历与生平
  • 看不见的伪造痕迹:AI时代的鉴伪攻防战
  • NAT转化
  • 後端開發技術教學(二) 條件指令、循環結構、定義函數
  • 在 Visual Studio Code 中免费使用 Gemini 2.5 Pro API
  • 力扣面试150(48/150)
  • cacti