当前位置: 首页 > news >正文

数据集005:螺丝螺母目标检测数据集(含数据集下载链接)

数据集简介

背景干净的目标检测数据集。
里面仅仅包含螺丝和螺母两种类别的目标,背景为干净的培养皿。图片数量约420张,train.txt 文件描述每个图片中的目标,label_list 文件描述类别

另附一个验证集合,有10张图片,eval.txt 描述图片中目标,格式和 train.txt 相同

部分代码

"""
训练常基于dark-net的YOLOv3网络,目标检测
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = '0.82'
import uuid
import numpy as np
import time
import six
import math
import random
import paddle
import paddle.fluid as fluid
import logging
import xml.etree.ElementTree
import codecs
import jsonfrom paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from PIL import Image, ImageEnhance, ImageDrawlogger = None
train_parameters = {"data_dir": "data/data6045","train_list": "train.txt","eval_list": "eval.txt","class_dim": -1,"label_dict": {},"num_dict": {},"image_count": -1,"continue_train": True,     # 是否加载前一次的训练参数,接着训练"pretrained": False,"pretrained_model_dir": "./pretrained-model","save_model_dir": "./yolo-model","model_prefix": "yolo-v3","freeze_dir": "freeze_model","use_tiny": True,          # 是否使用 裁剪 tiny 模型"max_box_num": 20,          # 一幅图上最多有多少个目标"num_epochs": 1,"train_batch_size": 8,      # 对于完整 yolov3,每一批的训练样本不能太多,内存会炸掉;如果使用 tiny,可以适当大一些"use_gpu": True,"yolo_cfg": {"input_size": [3, 448, 448],    # 原版的边长大小为608,为了提高训练速度和预测速度,此处压缩为448"anchors": [7, 10, 12, 22, 24, 17, 22, 45, 46, 33, 43, 88, 85, 66, 115, 146, 275, 240],"anchor_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]]},"yolo_tiny_cfg": {"input_size": [3, 256, 256],"anchors": [6, 8, 13, 15, 22, 34, 48, 50, 81, 100, 205, 191],"anchor_mask": [[3, 4, 5], [0, 1, 2]]},"ignore_thresh": 0.7,"mean_rgb": [127.5, 127.5, 127.5],"mode": "train","multi_data_reader_count": 4,"apply_distort": True,"nms_top_k": 300,"nms_pos_k": 300,"valid_thresh": 0.01,"nms_thresh": 0.45,"image_distort_strategy": {"expand_prob": 0.5,"expand_max_ratio": 4,"hue_prob": 0.5,"hue_delta": 18,"contrast_prob": 0.5,"contrast_delta": 0.5,"saturation_prob": 0.5,"saturation_delta": 0.5,"brightness_prob": 0.5,"brightness_delta": 0.125},"sgd_strategy": {"learning_rate": 0.002,"lr_epochs": [30, 50, 65],"lr_decay": [1, 0.5, 0.25, 0.1]},"early_stop": {"sample_frequency": 50,"successive_limit": 3,"min_loss": 2.5,"min_curr_map": 0.84}
}def init_train_parameters():"""初始化训练参数,主要是初始化图片数量,类别数:return:"""file_list = os.path.join(train_parameters['data_dir'], train_parameters['train_list'])label_list = os.path.join(train_parameters['data_dir'], "label_list")index = 0with codecs.open(label_list, encoding='utf-8') as flist:lines = [line.strip() for line in flist]for line in lines:train_parameters['num_dict'][index] = line.strip()train_parameters['label_dict'][line.strip()] = indexindex += 1train_parameters['class_dim'] = indexwith codecs.open(file_list, encoding='utf-8') as flist:lines = [line.strip() for line in flist]train_parameters['image_count'] = len(lines)

数据集链接:螺丝螺母目标检测数据集(430张)

http://www.lryc.cn/news/354810.html

相关文章:

  • Swift 类和结构体
  • 网络安全相关面试题(hw)
  • 前端开发攻略---三种方法解决Vue3图片动态引入问题
  • 零售EDI:Target DVS EDI项目案例
  • AWS安全性身份和合规性之AWS Firewall Manager
  • R实验 随机变量及其分布
  • rapidssl泛域名https600元一年
  • 月薪5万是怎样谈的?
  • linux下宝塔负载100%解决方法
  • 【C++】STL快速入门基础
  • 面向对象编程的魅力与实战:以坦克飞机大战为例
  • 二叉树——堆的实现
  • 【Spring】DynamicDataSourceHolder 动态数据源切换
  • LeeCode 3165 线段树
  • 修改元组元素
  • 【模版方法设计模式】
  • rust语言初识
  • 知识图谱数据预处理笔记
  • Unity面试八股文之基础篇
  • HTTPS能否避免流量劫持?如何实现HTTPS
  • 簡述Vue 2.0 响应式数据的原理
  • Kafka线上集群部署方案怎么做?no.6
  • vscode 的 AI 协助插件 Tabnine / Codeium
  • Flutter 中的 OutlineButton 小部件:全面指南
  • Kubernetes可视化界面之DashBoard
  • Docker学习(4):部署web项目
  • 驱动开发中引入私有数据的原因
  • 删除edge浏览器文本框储存记录值以及关闭自动填充
  • mysql事务 事务并发问题 隔离级别 以及原理
  • Android 性能为王时代SparseArray和HashMap一争高下