当前位置: 首页 > news >正文

基于x86_64 ubuntu22.04的framebuffer编程

文章目录

  • 前言
  • 一、framebuffer简介
  • 二、framebuffer接口
    • 1.framebuffer设备描述信息
    • 2.framebuffer访问接口
    • 3.查询/设置可更改信息
  • 三、使用步骤


前言

前段时间由于笔记本没有保管好,LCD显示屏压碎了。于是,将笔记本电脑拆开查看LCD型号。在淘宝上下单买了块新的,给老伙计重新装上了。又给笔记本重新装了系统,这个过程甚是艰辛。本来是想装WIN10 X64系统的,制作好U盘启动后程序卡在了win10的启动界面。本来以为可能是内存不够,在网上下单又购买了4G内存条给笔记本换上。装好内存条后,笔记本的运行速度确实有所提升。但是,安装win10 仍然是同样的情况。看来是CPU的性能不够,打算升级CPU。在网上查阅了很多关于升级CPU的帖子,最终结论是主板南桥芯片H55限制了CPU只能选择一代CPU。一代CPU都是双核四线程的,对性能提升应该不是很大。基于此,重新安装回win 7 x64旗舰版。装软件的时候发现,win7 跟 XP一样很多软件都不适用了。而且,还有大量的补丁。最终,选择了给它装上ubuntu 22.04。于是有了本文的硬件基础,本文就是在这台x86_64 ubuntu22.04上做的实验。

一、framebuffer简介

framebuffer是对LCD显示屏的硬件抽象,通过对framebuffer的操作可以直接显示到LCD上。framebuffer是一个字符设备,它向上为用户层提供统一的访问接口,向下屏蔽底层各类硬件显示设备的差异,提高framebuffer设备应用程序的兼容性和可移植性。
framebuffer是一个标准的字符设备,主设备号为29。linux系统最大支持32个framebuffer设备,次设备号一般从0开始,依次为0到31。与其它设备一样,设备节点位于/dev目录下面,一般命名为fbx。例如,/dev/fb0。

二、framebuffer接口

对于framebuffer应用程序开发,不需关心底层的具体实现,只需知道具体访问接口、数据结构以及显示设备的一些必要信息,即可开发应用程序。

1.framebuffer设备描述信息

framebuffer设备信息包括两部分,分别是不可更改和可更改信息。设备信息描述数据结构位于“include/uaip/linux/fb.h”中声明。
不可更改信息描述的是显示设备的固有属性、物理内存地址、物理内存大小等等;对于应用层来说,该部分信息可以用来查询显示设备固有属性信息,对于具体应用过程关联性不大。
struct fb_fix_screeninfo{
char id[16]; /* identification string eg “TT Builtin” /
unsigned long smem_start; /
Start of frame buffer mem /
/
(physical address) /
__u32 smem_len; /
Length of frame buffer mem /
__u32 type; /
see FB_TYPE_* /
__u32 type_aux; /
Interleave for interleaved Planes /
__u32 visual; /
see FB_VISUAL_* /
__u16 xpanstep; /
zero if no hardware panning /
__u16 ypanstep; /
zero if no hardware panning /
__u16 ywrapstep; /
zero if no hardware ywrap /
__u32 line_length; /
length of a line in bytes /
unsigned long mmio_start; /
Start of Memory Mapped I/O /
/
(physical address) /
__u32 mmio_len; /
Length of Memory Mapped I/O /
__u32 accel; /
Indicate to driver which /
/
specific chip/card we have /
__u16 capabilities; /
see FB_CAP_* /
__u16 reserved[2]; /
Reserved for future compatibility */
};

第二部分可更改的信息,涉及显示设备物理分辨率、虚拟分辨率、像素位宽,这部分信息在应用编程需要关注的,以计算显示位置、颜色、映射内存等等。该部分也设计显示设备的固有信息,但应用程序可以通过接口修改。

						struct fb_var_screeninfo{__u32 xres;			/* 可视分辨率(物理分辨率) */__u32 yres;__u32 xres_virtual;	/* 虚拟分辨率 */__u32 yres_virtual;__u32 xoffset;		/* 虚拟分辨率相对可视分配率偏移值 */__u32 yoffset;			__u32 bits_per_pixel;	/* 像素位宽,每个像素用多少未表示 */__u32 grayscale;		/* 灰度等级,0表示彩色,1表示灰度(黑白屏)*//* 缓存RGB位域 */struct fb_bitfield red;		/* bitfield in fb mem if true color, */struct fb_bitfield green;	/* else only length is significant */struct fb_bitfield blue;struct fb_bitfield transp;	/* transparency	*/	__u32 nonstd;			/* != 0 Non standard pixel format */__u32 activate;			/* see FB_ACTIVATE_* */__u32 height;			/* height of picture in mm    */__u32 width;			/* width of picture in mm     */__u32 accel_flags;		/* (OBSOLETE) see fb_info.flags *//* 实际显示屏(LCD)参数,根据LCD手册设置,用户层一般不用更改 */__u32 pixclock;			/* 像素时钟 */__u32 left_margin;		/* 显示设备水平方向前肩,单位:时钟 */__u32 right_margin;		/* 显示设备水平方向后肩,单位:时钟 */__u32 upper_margin;		/* 显示设备垂直方式前肩,单位:行 */__u32 lower_margin;		/* 显示设备垂直方向后肩,单位:行 */__u32 hsync_len;		/* 显示设备水平方向有效区域,单位:时钟 */__u32 vsync_len;		/* 显示设备垂直方向有效区域,单位:行 */__u32 sync;				/* see FB_SYNC_*		*/__u32 vmode;			/* see FB_VMODE_*		*/__u32 rotate;			/* angle we rotate counter clockwise */__u32 colorspace;		/* colorspace for FOURCC-based modes */__u32 reserved[4];		/* Reserved for future compatibility */}

framebuffer应用程序开发,主要关注的的成员参数是物理分辨率、像素位宽。物理分辨率和像素位宽决定了映射内存的大小,如一个LCD分辨率为1024768、像素位宽为32位;则需要的内存空间大小为:1024768*32/8=3145728字节。

2.framebuffer访问接口

framebuffer设备是一个标准的linux字符设备,可以通过标准虚拟文件接口open/read/write/ioctl/close访问。设备访问分为两部分数据,分别是控制数据流和显示数据流传。对控制数据流通过ioctl结合指定命令实现;对于显示流数据,由于数据量比较大,结合mmap函数,将framebuffer物理内存映射到用户态,直接访问物理内存。
ioctl(fd, cmd, param); /* 文件描述符, 命令字, 参数信息 */

	framebuffer设备ioctl命令位于“include/uapi/linux/fb.h”定义。/* include/uaip/linux/fb.h *//* ioctls0x46 is 'F'			*/#define FBIOGET_VSCREENINFO	0x4600	/* 查询显示设备可更改信息 */#define FBIOPUT_VSCREENINFO	0x4601	/* 设置显示设备可更改信息 */#define FBIOGET_FSCREENINFO	0x4602	/* 查询显示设备不可更改信息 */#define FBIOGETCMAP			0x4604#define FBIOPUTCMAP			0x4605#define FBIOPAN_DISPLAY		0x4606......

3.查询/设置可更改信息

函数原型:
int ioctl(int fd, int cmd, struct fb_var_screeninfo *var);

cmd,命令字:FBIOGET_VSCREENINFO
var,设备可更改信息数据结构
返回,成功返回0,失败返回-1,错误码存于errno中

获取显示设备可更改信息伪代码:

int fb = 0;
struct fb_var_screeninfo var;

fb = open(“/dev/fb0”, O_RDWR);
if (fb < 0)
{
printf(“open fb device failed:%s\n”,strerror(errno));
return -1;
}
if (ioctl(fb, FBIOGET_VSCREENINFO, &var))
{
printf(“read fb device param failed:%s\n”,strerror(errno));
return -1;
}

查询不可更改信息
函数原型:
int ioctl(int fd, int cmd, struct fb_fix_screeninfo *var);

cmd,命令字:FBIOGET_FSCREENINFO
var,设备不可更改信息数据结构
返回,成功返回0,失败返回-1,错误码存于errno中

获取显示设备不可更改信息伪代码:
int fb = 0;
struct fb_fix_screeninfo fix;

fb = open(“/dev/fb0”, O_RDWR);
if (fb < 0)
{
printf(“open fb device failed:%s\n”,strerror(errno));
return -1;
}
if (ioctl(fb, FBIOGET_FSCREENINFO, &fix))
{
printf(“read fb device param failed:%s\n”,strerror(errno));
return -1;
}

三、使用步骤

应用程序访问一个framebuffer设备的的总体流程如下图。
在这里插入图片描述
实例:
获取framebuffer设备信息
“红—绿—蓝” 1秒周期循环刷新输出

##include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <linux/fb.h>

struct _fb_info
{
int fd; /* framebuffer 文件描述符 /
uint8_t pbuf; / 映射内存 /
struct fb_fix_screeninfo fix;
struct fb_var_screeninfo var;/
framebuffer设备信息
/
};

struct _fb_info fb_app = {0};

/* 画点函数 */
static void draw_pixel(struct _fb_info *fb, int x, int y, uint32_t color)
{
uint8_t *poffset_buf = NULL;

poffset_buf = fb->pbuf + (x*fb->var.bits_per_pixel/8) + (y*fb->var.xres*fb->var.bits_per_pixel/8);	/* 计算内存偏移地址 */
*(uint32_t*)poffset_buf = color;	/* ARGB32格式 */

}

/* 全屏画点函数 */
static void fill_pixel(struct _fb_info *fb, uint32_t color)
{
int i, j;

for (i=0; i<fb->var.xres; i ++) 
{for (j=0; j<fb->var.yres; j ++) {draw_pixel(fb, i, j, color);}
}

}

int main(int argc, char *argv[])
{
int ret = 0;
int mem_size = 0;

if (argc < 2)
{printf("parameter invalid\n");return -1;
}fb_app.fd = open(argv[1], O_RDWR);
if (fb_app.fd < 0)
{printf("open device [%s] failed:%s\n", argv[1], strerror(errno));return -1;
}
printf("framebuffer device:%s\n", argv[1]);/* 读取不可更改信息 */
ret = ioctl(fb_app.fd, FBIOGET_FSCREENINFO, &fb_app.fix);    
if (ret < 0)
{printf("read fb device fscreeninfo failed:%s\n", strerror(errno));close(fb_app.fd);return -1;
}
printf("device id:%s\n", fb_app.fix.id);
printf("smem_start:0x%x, smem_len:%u\n", fb_app.fix.smem_start, fb_app.fix.smem_len);    /* 读取可更改信息 */
ret = ioctl(fb_app.fd, FBIOGET_VSCREENINFO, &fb_app.var);
if (ret < 0)
{printf("read fb device vscreeninfo failed:%s\n", strerror(errno));close(fb_app.fd);return -1;
}
printf("visible resolution:%d*%d\n", fb_app.var.xres, fb_app.var.yres);
printf("virtual resolution:%d*%d\n", fb_app.var.xres_virtual, fb_app.var.yres_virtual);
printf("pixel bits wide:%d\n", fb_app.var.bits_per_pixel);
printf("grayscale:%d\n", fb_app.var.grayscale);mem_size = fb_app.var.xres * fb_app.var.yres * fb_app.var.bits_per_pixel / 8;	/* 计算内存 */
fb_app.pbuf = (uint8_t *)mmap(NULL, mem_size, PROT_READ|PROT_WRITE, MAP_SHARED, fb_app.fd, 0);
if (fb_app.pbuf == NULL)
{printf("fb device mmap failed:%s\n", strerror(errno));close(fb_app.fd);return -1;
}
memset(fb_app.pbuf, 0, mem_size);	/* 清屏操作(黑屏)*/
for (;;)
{fill_pixel(&fb_app, 0xffff0000);/* 红 */sleep(1);fill_pixel(&fb_app, 0xff00ff00);/* 绿 */sleep(1);fill_pixel(&fb_app, 0xff0000ff);/* 蓝 */sleep(1);
}
munmap(fb_app.pbuf, mem_size);
close(fb_app.fd);return 0;	

}

http://www.lryc.cn/news/153393.html

相关文章:

  • 解密回文--栈
  • Mysql主从服务安装配置
  • 双向BFS
  • 数据艺术:精通数据可视化的关键步骤
  • MySQL 是如何实现事务的四大特性的?
  • python实现zscore归一化和minmax标准化
  • 架构师成长之路Redis第三篇|Redis key过期清除策略
  • C++智能指针之weak_ptr(保姆级教学)
  • ElementUI浅尝辄止18:Avatar 头像
  • 1688API技术解析,实现按图搜索1688商品(拍立淘)
  • 【面试经典150题】买卖股票的最佳时机
  • selenium可以编写自动化测试脚本吗?
  • CXL.mem M2S Message 释义
  • 使用boost::geometry::union_ 合并边界(内、外):方案二
  • ICCV 2023 | 小鹏汽车纽约石溪:局部上下文感知主动域自适应LADA
  • stable diffusion实践操作-黑白稿线稿上色
  • Python学习教程:集合操作的详细教程
  • 球球的排列
  • 1783_CMD启动MATLAB同时执行一个脚本
  • C语言中内存分配的几种方式
  • 组相联cache如何快速实现cache line eviction并使用PMU events验证
  • 【Stable Diffusion安装】支持python3.11 window版
  • Anycloud37D平台移植wirelesstools
  • 海康机器人工业相机 Win10+Qt+Cmake 开发环境搭建
  • 使用MDK5的一些偏僻使用方法和谋个功能的作用
  • 【实战】十一、看板页面及任务组页面开发(六) —— React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(二十八)
  • 在 Amazon 搭建无代码可视化的数据分析和建模平台
  • Pinely Round 2 (Div. 1 + Div. 2) G. Swaps(组合计数)
  • elasticSearch+kibana+logstash+filebeat集群改成https认证
  • GPT带我学-设计模式-迭代器模式