当前位置: 首页 > news >正文

C++智能指针之weak_ptr(保姆级教学)

目录

C++智能指针之weak_ptr

概述

作用

本文涉及的所有程序

使用说明

weak_ptr的常规操作

lock();

use_count();

expired();

reset();

shared_ptr & weak_ptr

尺寸

智能指针结构框架

常见使用问题

shared_ptr多次引用同一数据,会导致两次释放同一内存(只涉及shared_ptr)

shared_ptr循环引用导致内存泄露(涉及shared_ptr和weak_ptr)

shared_ptr指向局部变量的地址,会导致两次释放同一个内存(只涉及shared_ptr)

shared_ptr接收shared_ptr所实例化对象的this指针导致,会导致两次释放同一个内存(只涉及shared_ptr)


C++智能指针之weak_ptr

概述

std::weak_ptr 是一种智能指针,通常不单独使用,只能和 shared_ptr 类型指针搭配使用,可以视为 shared_ptr 指针的一种辅助工具。借助 weak_ptr 类型指针可以获取 shared_ptr 指针的一些状态信息,比如有多少指向相同空间的 shared_ptr 指针、通过expired()判断shared_ptr 指针指向的堆内存是否已经被释放等等,还可以解决shared_ptr 循环引用的问题。

  • weak_ptr:类模板,弱指针(弱引用计数)
  • weak_ptr弱指针,不会控制影响对象的生命周期(不会改变对象的引用计数),shared_ptr释放指向对象时,是不会考虑weak_ptr是否指向该对象
  • weak_ptr不是独立指针,不能单独操作所指向的资源(不配拥有对象),更不能指向一个新的空间;

作用

  • weak_ptr指针一般用来辅助shared_ptr的使用(监视shared_ptr指向对象的生命周期)
  • weak_ptr和shared_ptr之间可以相互转换,shared_ptr可以直接赋值给weak_ptr,但是反过来是行不通的,需要使用lock函数。

本文涉及的所有程序

00_code.cpp

#include <iostream>
#include <memory>using namespace std;class A
{
public:A(){cout << "A" << endl;}A(int num) : m_num(num){cout << "A int" << endl;}A(const A&& other) : m_num(other.m_num){cout << "A move int" << endl;}~A(){cout << "~A" << endl;}public:int m_num;
};int main(int argc, char const* argv[])
{shared_ptr<A> pa(new A(5));weak_ptr<A> wpa = pa;weak_ptr<A> wpa2 = pa;weak_ptr<A> wpa3 = pa;// weak_ptr常用功能auto pb = wpa.lock();if (pb == nullptr){cout << "pb is nullptr" << endl;}// use_count();返回的是shared_ptr的引用计数cout << wpa.use_count() << endl;// expired():判断当前弱指针指向的对象是否被释放if (wpa.expired()){cout << "wpa pointer class is free" << endl;}wpa.reset();return 0;
}

01_code.cpp

#include <iostream>
#include <memory>using namespace std;class Child;class Parent
{
public:Parent(){cout << "Parent" << endl;}~Parent(){cout << "~Parent" << endl;}//shared_ptr<Child> c;weak_ptr<Child> c;
};class Child
{
public:Child(){cout << "Child" << endl;}~Child(){cout << "~Child" << endl;}shared_ptr<Parent> p;
};int main(int argc, char const* argv[])
{shared_ptr<Parent>pp(new Parent());//pp:1shared_ptr<Child>cc(new Child());//cc:1//循环引用pp->c = cc;//cc:1 pp:1cc->p = pp;//pp:2 cc:1cout << pp.use_count()<<endl;cout << cc.use_count() << endl;return 0;
}

02_code.cpp

#include <iostream>
#include <memory>using namespace std;int main(int argc, char const *argv[])
{shared_ptr<int> p(new int(5));weak_ptr<int> wp = p;//shared_ptr/weak_ptr的尺寸大小是裸指针的两倍cout << sizeof(int *) << endl;cout << sizeof(p) << endl;cout << sizeof(wp) << endl;return 0;
}

03_code.cpp

#include <iostream>
#include <memory>using namespace std;class A:public enable_shared_from_this<A>
{
public:A(){cout << "A" << endl;}A(int num) : m_num(num){cout << "A int" << endl;}A(const A &&other) : m_num(other.m_num){cout << "A move int" << endl;}shared_ptr<A> getAddr(){//return shared_ptr<A>(this);return shared_from_this();//返回可共享的this指针}~A(){cout << "~A" << endl;}public:int m_num;
};int main(int argc, char const *argv[])
{// A a;// shared_ptr<A>temp(&a);// shared_ptr<A> temp = a.getAddr();// int num = 5;// shared_ptr<int>p(&num);//shared_ptr<A> pa(new A());A *pa = new A();shared_ptr<A> temp = pa->getAddr();return 0;
}

使用说明

在VS2022中进行调试,执行完第一条语句后,pa的强引用计数加1

执行完第二句的弱指针赋值后,发现多了一个弱引用计数,和强引用计数一样都为1

增加pa.reset()的操作。通过调试可以发现:不关心是否有弱指针指向当前对象,只要指向当前的指针强引用计数为0了,当前对象就会调用析构函数释放空间。

weak_ptr无法指向一个新的空间(只能指向已有的智能指针),它不配拥有一个对象,只能作为一个指向

weak_ptr不可以直接赋值给shared_ptr

weak_ptr的常规操作

lock();

获取弱指针指向的对象对应的共享指针,如果指向的对象释放,那么返回一个nullptr

调用lock函数来获得shared_ptr(如果对象已经被释放,则返回一个空的shared_ptr)

(有些书上叫做将弱指针转换为共享指针)

在VS2022下调试结果如下:

在调用lock前,pa的强引用计数为1

在调用lock后,pa的强引用计数变为2

use_count();

功能:返回有多少个shared_ptr智能指针指向某对象;(引用计数的个数)

用途:主要用于调试

expired();

判断弱指针是否过期(所指向的对象是否被释放true/false)

reset();

将该弱指针设置为空,弱引用计数减1,强引用计数不变

执行wpa.reset前,弱引用计数为3,强引用计数为2

执行wpa.reset后,弱引用计数减1,变为2;强引用计数仍为2

shared_ptr & weak_ptr

尺寸

shared_ptr和weak_ptr一样大,是裸指针的两倍;

智能指针结构框架

从中可以发现智能指针实际上由两个指针组成:一个指针指向数据,一个指针指向控制块

常见使用问题

shared_ptr多次引用同一数据,会导致两次释放同一内存(只涉及shared_ptr)

int* pInt = new int[100];shared_ptr sp1(pInt);// 一些其它代码之后…shared_ptr sp2(pInt);

shared_ptr循环引用导致内存泄露(涉及shared_ptr和weak_ptr)

我们定义了两个类:Parent和Child,两个类没有继承关系;在Parent中定义了一个Child的智能指针,在Child中定义了一个指向Parent类型的智能指针

在main函数中,定义分别定义Parent和Child类型的指针,让它们内部的指针互相指向

这样就产生了循环引用的现象

编译报错,这是由于未前置声明Child类,Parent类中找不到Child

加上前置声明

重新编译运行结果如下:发现两个类只构造了,没有析构释放,导致了内存泄漏

通过VS2022调试可以发现,两个main中的智能指针在循环引用后,引用计数都变成了2。在程序运行结束时,main中的两个智能指针释放了之后,引用计数减1后变为1,大于0;而两个在类中定义的智能指针,由于它们属于类中的属性,它们必须在析构函数被调用了才能释放,而程序结束引用计数不为0,也就无法调用析构函数。因此这样就导致了内存泄漏。

以图示说明如下:

解决方法:我们将类中的两个指针随便一个改为weak_ptr

如图,我修改的是Parent中的指针,运行发现两个对象空间可以被正常释放

分析:由于Parent类中的是weak_ptr,因此执行完p->c = cc;cc->p = pp;后,cc的强引用计数不变,仍为1,pp的强引用计数为2;当main中的return 0;执行完之后,局部变量释放,pp引用计数变成1,cc引用计数变为0,从而会调用Child的析构函数,将Child类中的shared_ptrp释放,因此pp的引用计数也变为0,最终调用Parent的析构函数,将全部空间释放掉。

shared_ptr指向局部变量的地址,会导致两次释放同一个内存(只涉及shared_ptr)

我们在类中定义了一个函数,用于返回当前对象的地址,其中this指针使用shared_ptr进行包装。

在main中实例化一个对象,并用一个智能指针来获取对象地址。

发现报错:段错误,局部对象被释放了两次

这是由于a是局部对象,它在程序运行结束的时候会自己调用析构函数进行释放,而temp是指向这个局部变量的智能指针,它在程序结束的时候会再次释放局部变量,因此导致了空间被释放两次,产生了段错误。与下图情况一模一样

同样使用智能指针接收对象的this指针也不行

解决方法:

通过裸指针申请空间的方法,实例化对象,然后再用智能指针接收对象返回值

shared_ptr接收shared_ptr所实例化对象的this指针导致,会导致两次释放同一个内存(只涉及shared_ptr)

继续以上面的class A为例,通过智能指针实例化从堆区new出来的对象,通过智能指针接收对象的this指针,也会导致空间被释放两次

解决方法:

针对通过智能指针实例化从堆区new出来的对象,通过智能指针接收对象的地址。而对于任何局部变量此方法无效(我们也可以使用上面的方法,直接使用裸指针从堆区实例化对象)

我们需要继承一个模板类enable_shared_from_this,并将要返回的this指针改为shared_from_this(),此方法可以返回可共享的this指针

运行结果:

http://www.lryc.cn/news/153385.html

相关文章:

  • ElementUI浅尝辄止18:Avatar 头像
  • 1688API技术解析,实现按图搜索1688商品(拍立淘)
  • 【面试经典150题】买卖股票的最佳时机
  • selenium可以编写自动化测试脚本吗?
  • CXL.mem M2S Message 释义
  • 使用boost::geometry::union_ 合并边界(内、外):方案二
  • ICCV 2023 | 小鹏汽车纽约石溪:局部上下文感知主动域自适应LADA
  • stable diffusion实践操作-黑白稿线稿上色
  • Python学习教程:集合操作的详细教程
  • 球球的排列
  • 1783_CMD启动MATLAB同时执行一个脚本
  • C语言中内存分配的几种方式
  • 组相联cache如何快速实现cache line eviction并使用PMU events验证
  • 【Stable Diffusion安装】支持python3.11 window版
  • Anycloud37D平台移植wirelesstools
  • 海康机器人工业相机 Win10+Qt+Cmake 开发环境搭建
  • 使用MDK5的一些偏僻使用方法和谋个功能的作用
  • 【实战】十一、看板页面及任务组页面开发(六) —— React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(二十八)
  • 在 Amazon 搭建无代码可视化的数据分析和建模平台
  • Pinely Round 2 (Div. 1 + Div. 2) G. Swaps(组合计数)
  • elasticSearch+kibana+logstash+filebeat集群改成https认证
  • GPT带我学-设计模式-迭代器模式
  • 数学建模--层次分析法(AHP)的Python实现
  • 机器学习笔记之最优化理论与方法(三)凸集的简单认识(下)
  • Apipost:API文档、调试、Mock与测试的一体化协作平台
  • Homebrew下载安装及使用教程
  • 【Codeforces】CF193D Two Segments
  • 内存管理概述
  • Spring的重试机制-SpringRetry
  • 水稻叶病害数据集(目标检测,yolo使用)