安全点(Safepoint)完成后唤醒暂停线程的过程
OpenJdk 17源码,安全点(Safepoint)完成后唤醒暂停线程的过程涉及多个关键步骤,主要集中在SafepointSynchronize::end()
和disarm_safepoint()
函数中。以下是完整的唤醒流程分析:
1. 安全点结束入口:SafepointSynchronize::end()
调用路径:
VMThread::inner_execute()
→SafepointSynchronize::end()
(当安全点操作结束时)。核心操作:
cpp
void SafepointSynchronize::end() {assert(Thread::current()->is_VM_thread(), "Only VM thread can end safepoint");disarm_safepoint(); // 解除安全点并唤醒线程Universe::heap()->safepoint_synchronize_end(); // 通知堆管理器post_safepoint_end_event(); // 记录事件 }
2. 核心唤醒逻辑:disarm_safepoint()
此函数是唤醒线程的核心,分为四个阶段:
(1) 更新全局状态
cpp
_state = _not_synchronized; // 标记安全点已结束 Atomic::release_store(&_safepoint_counter, _safepoint_counter + 1); // 更新安全点计数器(奇→偶)
作用:
将安全点状态从_synchronized
改为_not_synchronized
,确保后续线程检查时不再进入安全点等待。计数器意义:
奇数表示安全点活跃,偶数表示非活动。线程通过检查计数器的奇偶性决定是否进入安全点。
(2) 恢复线程状态
cpp
for (JavaThread *current = jtiwh.next(); ) {ThreadSafepointState* cur_state = current->safepoint_state();cur_state->restart(); // 将线程状态标记为运行(TSS _running) }
作用:
遍历所有Java线程,将其安全点状态(ThreadSafepointState
)从暂停状态(_at_safepoint
)重置为运行状态(_running
)。
(3) 释放线程锁
cpp
Threads_lock->unlock(); // 允许线程创建/销毁
作用:
在安全点期间持有的Threads_lock
被释放,允许JVM创建或销毁线程。
(4) 唤醒所有等待线程
cpp
_wait_barrier->disarm(); // 通过屏障唤醒线程
作用:
调用WaitBarrier
(Linux实现为LinuxWaitBarrier
)的disarm()
方法,唤醒所有在安全点中暂停的线程。
3. 屏障唤醒实现:LinuxWaitBarrier::disarm()
cpp
void LinuxWaitBarrier::disarm() {_futex_barrier = 0; // 重置屏障值为0(表示非活动)futex(&_futex_barrier, FUTEX_WAKE_PRIVATE, INT_MAX); // 唤醒所有等待线程 }
futex
系统调用:
使用FUTEX_WAKE_PRIVATE
唤醒所有在_futex_barrier
上等待的线程(INT_MAX
表示唤醒数量无上限)。屏障状态:
将_futex_barrier
设为0
,使线程在wait()
中退出循环(见下方逻辑)。
4. 线程如何被唤醒?
线程暂停逻辑:
在安全点期间,线程通过LinuxWaitBarrier::wait()
挂起:cpp
void LinuxWaitBarrier::wait(int barrier_tag) {while (barrier_tag == _futex_barrier) {futex(&_futex_barrier, FUTEX_WAIT_PRIVATE, barrier_tag); // 挂起线程} }
唤醒后的行为:
当disarm()
将_futex_barrier
设为0
后:futex
调用唤醒所有等待线程。线程检查
barrier_tag != _futex_barrier
(因为_futex_barrier=0
),退出循环。线程继续执行安全点之后的代码。
关键设计总结
状态同步:
通过_state
和_safepoint_counter
全局状态,确保线程安全退出安全点。屏障机制:
使用futex
实现高效等待/唤醒,避免忙等待。线程状态重置:
每个线程的ThreadSafepointState
被标记为运行(restart()
)。锁释放:
安全点结束后释放Threads_lock
,恢复JVM正常操作。
注意:唤醒后线程会执行
OrderAccess::fence()
内存屏障,确保看到安全点结束后的内存状态一致性。
##源码
void VMThread::inner_execute(VM_Operation* op) {assert(Thread::current()->is_VM_thread(), "Must be the VM thread");VM_Operation* prev_vm_operation = NULL;if (_cur_vm_operation != NULL) {// Check that the VM operation allows nested VM operation.// This is normally not the case, e.g., the compiler// does not allow nested scavenges or compiles.if (!_cur_vm_operation->allow_nested_vm_operations()) {fatal("Unexpected nested VM operation %s requested by operation %s",op->name(), _cur_vm_operation->name());}op->set_calling_thread(_cur_vm_operation->calling_thread());prev_vm_operation = _cur_vm_operation;}_cur_vm_operation = op;HandleMark hm(VMThread::vm_thread());EventMarkVMOperation em("Executing %sVM operation: %s", prev_vm_operation != NULL ? "nested " : "", op->name());log_debug(vmthread)("Evaluating %s %s VM operation: %s",prev_vm_operation != NULL ? "nested" : "",_cur_vm_operation->evaluate_at_safepoint() ? "safepoint" : "non-safepoint",_cur_vm_operation->name());bool end_safepoint = false;if (_cur_vm_operation->evaluate_at_safepoint() &&!SafepointSynchronize::is_at_safepoint()) {SafepointSynchronize::begin();if (_timeout_task != NULL) {_timeout_task->arm();}end_safepoint = true;}evaluate_operation(_cur_vm_operation);if (end_safepoint) {if (_timeout_task != NULL) {_timeout_task->disarm();}SafepointSynchronize::end();}_cur_vm_operation = prev_vm_operation;
}// Wake up all threads, so they are ready to resume execution after the safepoint
// operation has been carried out
void SafepointSynchronize::end() {assert(Threads_lock->owned_by_self(), "must hold Threads_lock");EventSafepointEnd event;assert(Thread::current()->is_VM_thread(), "Only VM thread can execute a safepoint");disarm_safepoint();Universe::heap()->safepoint_synchronize_end();SafepointTracing::end();post_safepoint_end_event(event, safepoint_id());
}void SafepointSynchronize::disarm_safepoint() {uint64_t active_safepoint_counter = _safepoint_counter;{JavaThreadIteratorWithHandle jtiwh;
#ifdef ASSERT// A pending_exception cannot be installed during a safepoint. The threads// may install an async exception after they come back from a safepoint into// pending_exception after they unblock. But that should happen later.for (; JavaThread *cur = jtiwh.next(); ) {assert (!(cur->has_pending_exception() &&cur->safepoint_state()->is_at_poll_safepoint()),"safepoint installed a pending exception");}
#endif // ASSERTOrderAccess::fence(); // keep read and write of _state from floating upassert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");// Change state first to _not_synchronized.// No threads should see _synchronized when running._state = _not_synchronized;// Set the next dormant (even) safepoint id.assert((_safepoint_counter & 0x1) == 1, "must be odd");Atomic::release_store(&_safepoint_counter, _safepoint_counter + 1);OrderAccess::fence(); // Keep the local state from floating up.jtiwh.rewind();for (; JavaThread *current = jtiwh.next(); ) {// Clear the visited flag to ensure that the critical counts are collected properly.DEBUG_ONLY(current->reset_visited_for_critical_count(active_safepoint_counter);)ThreadSafepointState* cur_state = current->safepoint_state();assert(!cur_state->is_running(), "Thread not suspended at safepoint");cur_state->restart(); // TSS _runningassert(cur_state->is_running(), "safepoint state has not been reset");}} // ~JavaThreadIteratorWithHandle// Release threads lock, so threads can be created/destroyed again.Threads_lock->unlock();// Wake threads after local state is correctly set._wait_barrier->disarm();
}// Guarantees any thread that called wait() will be awake when it returns.// Provides a trailing fence.void disarm() {assert(_owner == Thread::current(), "Not owner thread");_impl.disarm();}void LinuxWaitBarrier::disarm() {assert(_futex_barrier != 0, "Should be armed/non-zero.");_futex_barrier = 0;int s = futex(&_futex_barrier,FUTEX_WAKE_PRIVATE,INT_MAX /* wake a max of this many threads */);guarantee_with_errno(s > -1, "futex FUTEX_WAKE failed");
}void LinuxWaitBarrier::wait(int barrier_tag) {assert(barrier_tag != 0, "Trying to wait on disarmed value");if (barrier_tag == 0 ||barrier_tag != _futex_barrier) {OrderAccess::fence();return;}do {int s = futex(&_futex_barrier,FUTEX_WAIT_PRIVATE,barrier_tag /* should be this tag */);guarantee_with_errno((s == 0) ||(s == -1 && errno == EAGAIN) ||(s == -1 && errno == EINTR),"futex FUTEX_WAIT failed");// Return value 0: woken up, but re-check in case of spurious wakeup.// Error EINTR: woken by signal, so re-check and re-wait if necessary.// Error EAGAIN: we are already disarmed and so will pass the check.} while (barrier_tag == _futex_barrier);
}