当前位置: 首页 > news >正文

论文学习22:UNETR: Transformers for 3D Medical Image Segmentation

代码来源

unetr

模块作用

具有收缩和扩展路径的全卷积神经网络 (FCNN) 在大多数医学图像分割应用中表现出色,但卷积层的局部性限制了其学习长距离空间依赖性的能力。受 Transformer 在自然语言处理 (NLP) 领域近期在长距离序列学习方面取得的成功的启发,本文引入了一种名为 UNEt Transformers (UNETR) 的全新架构,它利用 Transformer 作为编码器来学习输入体的序列表征,并有效捕捉全局多尺度信息。Transformer 编码器通过不同分辨率的跳跃连接直接连接到解码器,以计算最终的语义分割输出。

模块结构

  • Transformer编码器
    • 将3D图像转换为序列,学习长距离依赖和全局多尺度上下文,确保模型捕捉器官/肿瘤的变异形状和位置。
  • CNN解码器
    • 通过上采样和跳跃连接恢复空间分辨率,融合全局(编码器)和局部(低级特征)信息,生成精确分割图。

总结

本文提出了一种基于Transformer的新型架构,称为UNETR,用于对体积医学图像进行语义分割,并将该任务重新表述为一维序列到序列的预测问题。研究人员提出使用Transformer编码器来增强模型学习长距离依赖关系的能力,并有效地捕捉多尺度的全局上下文表征。研究人员验证了UNETR在CT和MRI模式下不同体积分割任务中的有效性。UNETR在BTCV排行榜的标准赛和自由赛中均取得了多器官分割领域的新最高水平,并在MSD数据集上优于脑肿瘤和脾脏分割的竞争方法。总而言之,UNETR展现出了有效学习医学图像中关键解剖关系的潜力,这个方法可以作为医学图像分析中基于Transformer的新型分割模型的基础。

http://www.lryc.cn/news/617805.html

相关文章:

  • TCGA数据集下载工具gdc-client下载慢解决方案
  • 掘金数据富矿,永洪科技为山东黄金定制“数智掘金”实战营
  • JavaScript let的使用
  • macos彻底删除vscode
  • 2025年农业工程与环境预防国际会议(ICAEEP 2025)
  • k8s 部署mysql主从集群
  • 用AListLite让安卓手机成为NAS实现文件共享
  • 基于开源模型构建医疗疾病大模型:从理论到实践
  • 2025牛客多校第八场 根号-2进制 个人题解
  • USB 基本描述符
  • TRL - Transformer Reinforcement Learning SFTTrainer 和 SFTConfig
  • AI(2)-神经网络(激活函数)
  • 当生产环境卡成 PPT:Spring Boot 线程 Dump 捉妖指南 - 第544篇
  • 【09-神经网络介绍2】
  • 数据结构-排序(2)
  • 【排序算法】⑦归并排序
  • 用Python从零开始实现神经网络
  • 【08-神经网络介绍】
  • STM32 HAL库 HAL_TIM_OC_Start函数解读
  • maven项目打包成sdk后在别的项目使用
  • 深度解析三大HTTP客户端(Fetch API、Axios 和 Alova)——优劣与选择策略
  • 【03】厦门立林科技——立林科技 嵌入式 校招笔试,题目记录及解析
  • REDIS 各种数据结构有什么作用?都能干什么?
  • 写一篇Ping32和IP-Guard的对比,重点突出Ping32
  • 使用行为树控制机器人(一) —— 节点
  • 芯片学习 8 :IP集成、cluster、lint
  • 大语言模型(LLM)核心概念与应用技术全解析:从Prompt设计到向量检索
  • AI入门学习--如何写好prompt?
  • MySQL 数据操作全流程:创建、读取、更新与删除实战
  • 高精度蓝牙定位:技术、应用与未来发展