[4.2-2] NCCL新版本的register如何实现的?
文章目录
- 1->2->3
- 1. ncclRegisterP2pIpcBuffer
- 2. ncclIpcLocalRegisterBuffer(..., 1, 0,...)
- 3. ipcRegisterBuffer(..., regRecord,..., isLegacyIpc)
- 4. p2pProxyRegister()
1->2->3
1. ncclRegisterP2pIpcBuffer
在enqueue.cc内的调用是:
NCCLCHECK(ncclRegisterP2pIpcBuffer(comm, addrs[dir], bytes[dir], peerRank, ®Flag, ®Addr, &plan->cleanupQueue));
会走到sendrecv_reg.cc,这里的 ncclRegisterP2pIpcBuffer
实现:
- ncclParamLocalRegister()环境变量开启的话就会走到ncclIpcLocalRegisterBuffer,这里的NCCL_IPC_SENDRECV是0,最重要的就是这里的regAddr。返回出来的
regAddr
地址是对端的地址加上偏移peerRmtAddrs + offset; - ncclIpcGraphRegisterBuffer类似
ncclResult_t ncclRegisterP2pIpcBuffer(struct ncclComm* comm, // NCCL 通信器,包含所有通信上下文信息void* userbuff, // 用户要注册的 buffer 地址(本地 buffer)size_t size, // buffer 的大小(字节数)int peerRank, // 对端 rank ID(要与哪个 rank 进行 P2P 通信)int* regFlag, // 输出参数:注册是否成功的标志(0=失败,1=成功)void** regAddr, // 输出参数:注册后获得的远程地址(对端 buffer 地址)struct ncclIntruQueue<struct ncclCommCallback, &ncclCommCallback::next>* cleanupQueue // 清理队列,用于管理资源释放
) {ncclResult_t ret = ncclSuccess;uintptr_t offset = 0;uintptr_t* peerRmtAddrs = NULL;*regFlag = 0;if (comm->planner.persistent && ncclParamGraphRegister()) {ncclIpcGraphRegisterBuffer(comm, userbuff, size, &peerRank, 1, NCCL_IPC_SENDRECV, regFlag, &offset, &peerRmtAddrs, reinterpret_cast<void*>(cleanupQueue), NULL);}if (*regFlag == 0 && ncclParamLocalRegister()) {ncclIpcLocalRegisterBuffer(comm, userbuff, size, &peerRank, 1, NCCL_IPC_SENDRECV, regFlag, &offset, &peerRmtAddrs);}if (*regFlag)*regAddr = (void*)((uintptr_t)peerRmtAddrs + offset);return ret;
}
2. ncclIpcLocalRegisterBuffer(…, 1, 0,…)
在调用真正的 ipcRegisterBuffer
之前,多创建了一个 ncclReg
结构的 regRecord
去:
- 查找是否已经注册(
ncclRegFind(comm, userbuff, buffSize, ®Record)
) - 注册过的地址是否有效(
ncclRegLocalIsValid(regRecord, &isValid)
)
ncclResult_t ncclIpcLocalRegisterBuffer(ncclComm* comm, // NCCL 通信器const void* userbuff, // 用户要注册的 buffer 地址size_t buffSize, // buffer 大小int* peerRanks, // 对端 rank 数组int nPeers, // 对端数量 这里上面丢下来的是1ncclIpcRegType type, // 注册类型 (NCCL_IPC_SENDRECV=0)int* regBufFlag, // 输出:注册成功标志uintptr_t* offsetOut, // 输出:buffer 在注册内存中的偏移uintptr_t** peerRmtAddrsOut // 输出:对端远程地址数组
) {ncclResult_t ret = ncclSuccess;struct ncclReg *regRecord = NULL;bool isValid = false;*regBufFlag = 0;*offsetOut = 0;*peerRmtAddrsOut = NULL;if (comm && userbuff && buffSize > 0 && nPeers > 0) {NCCLCHECKGOTO(ncclRegFind(comm, userbuff, buffSize, ®Record), ret, fail);NCCLCHECKGOTO(ncclRegLocalIsValid(regRecord, &isValid), ret, fail);if (isValid)NCCLCHECKGOTO(ipcRegisterBuffer(comm, userbuff, buffSize, peerRanks, nPeers, type, regRecord, regBufFlag, offsetOut, peerRmtAddrsOut, NULL), ret, fail);}exit:return ret;
fail:*regBufFlag = 0;*offsetOut = 0;*peerRmtAddrsOut = NULL;goto exit;
}
3. ipcRegisterBuffer(…, regRecord,…, isLegacyIpc)
跨process P2P通信内存映射的实现,本地进程可以直接access对端进程的内存。
- 首先则立初始化了局部变量 还有要返回的变量
static ncclResult_t ipcRegisterBuffer(ncclComm* comm, const void* userbuff, size_t buffSize, int* peerRanks, int nPeers, ncclIpcRegType type, struct ncclReg* regRecord, int* regBufFlag, uintptr_t* offsetOut, uintptr_t** peerRmtAddrsOut, bool* isLegacyIpc) {// 初始化局部变量ncclResult_t ret = ncclSuccess;struct ncclIpcRegInfo* newInfo = NULL; // 新的 IPC 注册信息uintptr_t* peerRmtAddrs = NULL; // 对端远程地址数组int legacyIpcCap = 0; // Legacy IPC 能力标志size_t baseSize = 0; // 基地址大小void* baseAddr = NULL; // 基地址bool needUpdate = false; // 是否需要更新设备端地址数组// 初始化所有输出参数为默认值*regBufFlag = 0;*offsetOut = 0;*peerRmtAddrsOut = NULL;if (isLegacyIpc) *isLegacyIpc = false;
- 主注册loop,这里会遍历所有对端。主要是global rank号转换成local rank号
if (regRecord) {int peerLocalRank = -1;for (int p = 0; p < nPeers; p++) {int peerRank = peerRanks[p]; // 全局的对端rankpeerLocalRank = comm->rankToLocalRank[peerRank]; // 转换为本地rank
- 检查是否在regRecord内注册过了,如果注册过的话,直接去复用
if (regRecord->ipcInfos[peerLocalRank]) {// We already have IPC info for peerLocalRank, no need to register it, we can reuse it*regBufFlag = 1;if (isLegacyIpc) *isLegacyIpc = regRecord->ipcInfos[peerLocalRank]->impInfo.legacyIpcCap;INFO(NCCL_REG, "rank %d - IPC reuse buffer %p size %ld (baseAddr %p size %ld) to peer %d regAddr %p", comm->rank, userbuff, buffSize, (void*)regRecord->addr, regRecord->pages * comm->regCache.pageSize, peerRank, regRecord->ipcInfos[peerLocalRank]->impInfo.rmtRegAddr);
}
- 没注册的话就开始注册,这一步大致包括获取buff信息->建立proxy连接->创建IPC Handle:
// Register buffer with peerLocalRankstruct ncclProxyConnector* proxyConn = NULL;struct p2pIpcExpInfo ipcInfo;if (baseAddr == NULL) {CUCHECKGOTO(cuMemGetAddressRange((CUdeviceptr*)&baseAddr, &baseSize, (CUdeviceptr)userbuff), ret, fail);CUCHECKGOTO(cuPointerGetAttribute((void*)&legacyIpcCap, CU_POINTER_ATTRIBUTE_IS_LEGACY_CUDA_IPC_CAPABLE, (CUdeviceptr)baseAddr), ret, fail);}if (comm->gproxyConn[peerRank].initialized == false)NCCLCHECKGOTO(ncclProxyConnect(comm, TRANSPORT_P2P, 1, peerRank, &comm->gproxyConn[peerRank]), ret, fail);proxyConn = &comm->gproxyConn[peerRank];// Get the mem handle for that buffer. It may have been allocated through cudaMalloc in which case we'll// get the CUDA legacy mem handle, or through cuMem*.if (ncclCuMemEnable()) {CUmemGenericAllocationHandle handle;if (CUPFN(cuMemRetainAllocationHandle(&handle, baseAddr)) != CUDA_SUCCESS) {// if cuMem* export fails, retry legacy exportif (comm->directMode || !ncclParamLegacyCudaRegister()) goto fail;CUDACHECKGOTO(cudaIpcGetMemHandle(&ipcInfo.ipcDesc.devIpc, baseAddr), ret, fail);ipcInfo.legacyIpcCap = true;if (isLegacyIpc) *isLegacyIpc = true;} else {ipcInfo.legacyIpcCap = false;if (isLegacyIpc) *isLegacyIpc = false;// cuMem* export to file descriptor or fabric handleif (proxyConn->sameProcess) {memcpy(&ipcInfo.ipcDesc.memHandle, &handle, sizeof(CUmemGenericAllocationHandle));} else {if (ncclCuMemHandleType == CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR) {// **** 这里是最最最最最最重要的部分********int expFd = -1;// 这里的cuMem的handle导出成文件描述符expFdCUCHECKGOTO(cuMemExportToShareableHandle(&expFd, handle, ncclCuMemHandleType, 0), ret, fail);// 发送expFd到对端的进程,调用UDSNCCLCHECKGOTO(ncclProxyClientQueryFdBlocking(comm, proxyConn, expFd, &ipcInfo.impFd), ret, fail);SYSCHECKGOTO(close(expFd), "close", ret, fail);} else {// Allow this to silently fail for cases where the user buff cannot be registeredif (CUPFN(cuMemExportToShareableHandle(&ipcInfo.ipcDesc.cuDesc.handle, handle, ncclCuMemHandleType, 0)) != CUDA_SUCCESS) {CUCHECKGOTO(cuMemRelease(handle), ret, fail);goto fail;}}}CUCHECKGOTO(cuMemRelease(handle), ret, fail);}} else if (legacyIpcCap) {// legacy exportif (comm->directMode || !ncclParamLegacyCudaRegister()) goto fail;CUDACHECKGOTO(cudaIpcGetMemHandle(&ipcInfo.ipcDesc.devIpc, baseAddr), ret, fail);ipcInfo.legacyIpcCap = true;if (isLegacyIpc) *isLegacyIpc = true;} else {// nothing works, just returngoto fail;}
- ncclProxyConnect(comm, TRANSPORT_P2P, 1, peerRank, &comm->gproxyConn[peerRank]), ret, fail);
- ncclProxyCallBlocking(comm, proxyConn, ncclProxyMsgRegister, &ipcInfo, sizeof(p2pIpcExpInfo), &rmtRegAddr, sizeof(void*)), ret, fail);
两次触发proxy,都会对应的去走p2pTransport
内的p2pSendProxyConnect
,p2pProxyRegister
,还有p2pProxyDeRegister
。 这里请跳到后面4章我单独说明了p2pProxyRegister
。
flowchart TDA[获取 buff 信息] --> B[ncclProxyConnect] --> C[创建 IPC Handle]C --> D{cuMem Enable?}D -- 否 --> E{允许 legacy?}E -- 否 --> Z[失败:直接返回 fail]E -- 是 --> F[使用 cudaIpcGetMemHandle 获取 legacy IPC]F --> G[设置 legacyIpcCap = true]D -- 是 --> H[cuMemRetainAllocationHandle 成功?]H -- 否 --> I{允许 legacy?}I -- 否 --> ZI -- 是 --> FH -- 是 --> J{是否是 sameProcess?}J -- 是 --> K[直接 memcpy handle]J -- 否 --> L{Handle 类型?}L -- POSIX_FD --> M[导出到 fd → proxyClientQueryFd → close fd]L -- 其他类型 --> N[cuMemExportToShareableHandle → 检查 → 释放 handle]M --> O[释放 handle]N --> OK --> OO --> P[设置 legacyIpcCap = false]
- 向对端注册并获取远程地址
在第4步中一开始就在向p2pIpcExpInfo
结构的ipcInfo
中填写接下来注册需要的信息。然后ncclProxyConnector
结构的proxyConn内有连接的信息。这两者包含了注册所需要的所有信息,通过具体p2p传输层的proxy向对端注册,并拿到对端proxy返回的注册地址rmtRegAddr
:
void* rmtRegAddr = NULL;ipcInfo.size = baseSize;// offset是用户注册的内存区域在完整内存块中的偏移,给后面保存主测信息用ipcInfo.offset = regRecord->addr - (uintptr_t)baseAddr;// Now ipcInfo contains all necessary registration info. Start to register buffer on proxy side// and get the remote register address back.if (proxyConn) {INFO(NCCL_REG, "rank %d - IPC registering buffer %p size %ld (baseAddr %p size %ld) to peer %d", comm->rank, userbuff, buffSize, (void*)regRecord->addr, ipcInfo.size, peerRank);NCCLCHECKGOTO(ncclProxyCallBlocking(comm, proxyConn, ncclProxyMsgRegister, &ipcInfo, sizeof(p2pIpcExpInfo), &rmtRegAddr, sizeof(void*)), ret, fail);}
- 保存注册信息
if (rmtRegAddr) {NCCLCHECKGOTO(ncclCalloc(&newInfo, 1), ret, fail);// 更新注册记录状态regRecord->state |= IPC_REG_COMPLETE;// 填充注册信息newInfo->peerRank = peerRank;newInfo->baseAddr = baseAddr;newInfo->impInfo.rmtRegAddr = rmtRegAddr; // 远程地址!newInfo->impInfo.offset = ipcInfo.offset;newInfo->impInfo.legacyIpcCap = ipcInfo.legacyIpcCap;newInfo->ipcProxyconn = proxyConn;// 保存到 regRecordregRecord->ipcInfos[peerLocalRank] = newInfo;// 初始化主机端地址数组if (regRecord->regIpcAddrs.hostPeerRmtAddrs == NULL) {NCCLCHECKGOTO(ncclCalloc(®Record->regIpcAddrs.hostPeerRmtAddrs, comm->localRanks), ret, fail);}regRecord->regIpcAddrs.hostPeerRmtAddrs[peerLocalRank] = (uintptr_t)rmtRegAddr;needUpdate = true;*regBufFlag = 1; // 标记注册成功
}
- 返回peer对的地址
- p2p走的else分支,直接把对端的地址写到peerRmtAddrsOut指针内,由
ipcRegisterBuffer
返回给调用方 - cc则会维护所有对端地址数组
if (*regBufFlag) {if (type == NCCL_IPC_COLLECTIVE) {if (regRecord->regIpcAddrs.devPeerRmtAddrs == NULL || needUpdate) {// 获取 CUDA 流cudaStream_t hostStream, deviceStream;NCCLCHECKGOTO(ncclStrongStreamAcquire(ncclCudaGraphNone(), &comm->sharedRes->hostStream, false, &hostStream), ret, fail);NCCLCHECKGOTO(ncclStrongStreamAcquire(ncclCudaGraphNone(), &comm->sharedRes->deviceStream, false, &deviceStream), ret, fail);// 分配设备端地址数组if (regRecord->regIpcAddrs.devPeerRmtAddrs == NULL)NCCLCHECKGOTO(ncclCudaCallocAsync(®Record->regIpcAddrs.devPeerRmtAddrs, comm->localRanks, hostStream), ret, fail);// 将主机端地址数组复制到设备端if (needUpdate)NCCLCHECKGOTO(ncclCudaMemcpyAsync(regRecord->regIpcAddrs.devPeerRmtAddrs, regRecord->regIpcAddrs.hostPeerRmtAddrs, comm->localRanks, hostStream), ret, fail);// 同步流NCCLCHECKGOTO(ncclStreamWaitStream(deviceStream, hostStream, comm->sharedRes->scratchEvent), ret, fail);NCCLCHECKGOTO(ncclStrongStreamRelease(ncclCudaGraphNone(), &comm->sharedRes->hostStream, false), ret, fail);NCCLCHECKGOTO(ncclStrongStreamRelease(ncclCudaGraphNone(), &comm->sharedRes->deviceStream, false), ret, fail);}peerRmtAddrs = regRecord->regIpcAddrs.devPeerRmtAddrs;} else {assert(nPeers == 1);// p2p always returns remote addr here since remote buffer addr is passed in ncclDevWorkP2p structpeerRmtAddrs = (uintptr_t*)regRecord->regIpcAddrs.hostPeerRmtAddrs[peerLocalRank];}*offsetOut = (uintptr_t)userbuff - regRecord->addr;*peerRmtAddrsOut = peerRmtAddrs;}
4. p2pProxyRegister()
ipcRegisterBuffer
触发proxy注册前是传递了:proxyConn和ipcInfo到ncclProxyMsgRegister内。
NCCLCHECKGOTO(ncclProxyCallBlocking(comm, proxyConn, ncclProxyMsgRegister, &ipcInfo, sizeof(p2pIpcExpInfo), &rmtRegAddr, sizeof(void*)), ret, fail);
具体来看:p2pProxyRegister
实现:
- 首先就是void* reqBuff指针指向的地址,也就是上面传下来的ipcInfo。变为ipcExpInfo后从里面取需要的信息。也就是之前
ipcRegisterBuffer
计算得到的size,offset,用cuda ipc/cuMem,和ipc描述符(ipcDesc)。
static ncclResult_t p2pProxyRegister(struct ncclProxyConnection* connection, // proxy 连接信息struct ncclProxyState* proxyState, // proxy 状态void* reqBuff, // 请求缓冲区 (p2pIpcExpInfo)int reqSize, // 请求大小void* respBuff, // 响应缓冲区 (void* regAddr)int respSize, // 响应大小int* done // 完成标志
) {struct p2pIpcExpInfo* ipcExpInfo = (struct p2pIpcExpInfo*)reqBuff;void* regAddr = NULL;ncclResult_t ret = ncclSuccess;bool mapped = false;bool imported = false;CUmemGenericAllocationHandle handle;assert(sizeof(struct p2pIpcExpInfo) == reqSize); // 确认请求大小assert(sizeof(void*) == respSize); // 确认响应大小
}
- 如果走传统cuda ipc那么就是走:
if (ipcExpInfo->legacyIpcCap) {// legacy importCUDACHECKGOTO(cudaIpcOpenMemHandle(®Addr, ipcExpInfo->ipcDesc.devIpc, cudaIpcMemLazyEnablePeerAccess), ret, fail);regAddr = (void*)((uintptr_t)regAddr + ipcExpInfo->offset);} else {
但是大部分都是cuMem,ipcExpInfo->legacyIpcCap是false的。所以会走cuMem的ipc:
这里的P2pProxyRegister运行于对端的Proxy进程,完成 cuMemImportFromShareableHandle
+ cuMemMap
,在对端jin
} else {// cuMem importif (connection->sameProcess) {// 同进程直接复制handlememcpy(&handle, &ipcExpInfo->ipcDesc.memHandle, sizeof(CUmemGenericAllocationHandle));} else {// 跨进程:需要导入句柄if (ncclCuMemHandleType == CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR) {// 文件描述符方式CUCHECKGOTO(cuMemImportFromShareableHandle(&handle, (void*)(uintptr_t)ipcExpInfo->impFd, ncclCuMemHandleType), ret, fail);SYSCHECKGOTO(close(ipcExpInfo->impFd), "close", ret, fail);} else {// Fabric Handle 方式CUCHECKGOTO(cuMemImportFromShareableHandle(&handle, (void*)&ipcExpInfo->ipcDesc.cuDesc, ncclCuMemHandleType), ret, fail);}}imported = true;// 接着就会去cuMem内存映射// 预留虚拟地址空间CUCHECKGOTO(cuMemAddressReserve((CUdeviceptr*)®Addr, ipcExpInfo->size, /* alignment */ 0, /* addr */ 0, /* flags */ 0), ret, fail);// 将物理内存映射到虚拟地址CUCHECKGOTO(cuMemMap((CUdeviceptr)regAddr, ipcExpInfo->size, /* offset */ 0, handle, /* flags */ 0), ret, fail);mapped = true;// 设置访问权限CUmemAccessDesc accessDesc = {};accessDesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;accessDesc.location.id = proxyState->cudaDev; // 本地 GPU IDaccessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; // 读写权限CUCHECKGOTO(cuMemSetAccess((CUdeviceptr)regAddr, ipcExpInfo->size, &accessDesc, 1), ret, fail);// 加上偏移量,指向实际的用户 bufferregAddr = (void*)((uintptr_t)regAddr + ipcExpInfo->offset);
}
- 返回结果
这里respBuff是proxy返回的参数,调用者ipcRegisterBuffer
内的rmtRegAddr会拿到respBuff。
exit:memcpy(respBuff, (void*)®Addr, sizeof(void*)); // 将 regAddr 复制到响应缓冲区*done = 1; // 标记操作完成return ret;
## 5. summary
handle是**物理内存的标识符**,在 CUDA 统一内存管理中,物理内存和虚拟地址是分离的。
* **File Descriptor(FD)**:利用 Linux 内核的文件描述符机制,可以跨进程传递
* **Fabric Handle(FH)**:NVIDIA 的网络互连技术,支持跨节点的内存共享
```cpp
// rank1 进程导出 FD
int expFd;
cuMemExportToShareableHandle(&expFd, handle, CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR, 0);// 通过 Unix Domain Socket 发送到 rank2
ncclProxyClientQueryFdBlocking(comm, proxyConn, expFd, &impFd);// rank2 进程接收 FD 并导入
cuMemImportFromShareableHandle(&newHandle, &impFd, CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR);
这个过程就是:
- rank1 的物理内存通过 handle 被 rank2 进程导入
- rank2 在自己的虚拟地址空间B中创建映射 [regAddr]
- [rmtRegAddr] 就是 rank2 进程中指向 rank1 内存的虚拟地址A
- rank1 告诉rank2:"要访问我的内存,请使用 rank2 进程中的地址 [rmtRegAdd]