当前位置: 首页 > news >正文

Matrix Theory study notes[5]

文章目录

  • linear space
  • references

linear space

  1. the dimension of a linear space is maximal number of vectors among all vetor groups of linearly indepedent in the linear space.
  2. let n is the dimension of A which is a linear space and A is {3a,4b,6a−5∣aandbarecoprime,aandbareintegers}\{3a,4b,6a-5|a\quad and\quad b\quad are \quad coprime,a \quad and \quad b \quad are \quad integers\}{3a,4b,6a5∣aandbarecoprime,aandbareintegers},the nnn is 2 because that the maximal numbers of vectors such as {3a,4b}\{3a,4b\}{3a,4b},{4b,6a−5}\{4b,6a-5\}{4b,6a5} are two,dim A=2.
  3. the linear space A with n dimension is called as n dimension linear space AnA^nAn in the number field,if n=+∞n=+\inftyn=+,then A is called as unlimited dimension linear space.
  4. a basis of linear space meets following conditions.
  • let V is a linear space in the number field K and v1,v2,v3,...,vr∈Vv_1,v_2,v_3,...,v_r \in Vv1,v2,v3,...,vrV,VVV satsifies two situations.

    • v1,v2,v3,...,vrv_1,v_2,v_3,... ,v_rv1,v2,v3,...,vr are linear independent.
    • each vector of V is the linear combination of v1,v2,v3,...,vrv_1,v_2,v_3,... ,v_rv1,v2,v3,...,vr.

    the v1,v2,v3,...,vrv_1,v_2,v_3,... ,v_rv1,v2,v3,...,vrcan be called as the basis of linear space VVV,viv_ivi is basic vector.

  • the basis of a linear space is not one and only.

  1. dimension of a linear space is the number of vectors that the basis of the linear space includes.
  2. the vectors which be included in fundamental resolution set of homogeneous linear equations system Ax=0Ax=0Ax=0 is a basis of solution space.
  • homogeneous linear equations system,all the constant terms of it are zero,can be formed as follows.

{a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0⋮am1x1+am2x2+⋯+amnxn=0\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0
the aija_{ij}aijis are coefficient,xjx_jxj are unkown number,the right items of all equations are zero.

  • the zero solution exists necessarily, x1=x2=⋯=xn=0x_1 = x_2 = \cdots = x_n = 0x1=x2==xn=0 , to be called as trivial solution.
  • the non-zero solution exists.
    • if the rank rrr of a equations system’s coefficient matrix is less than the number of unkown number nnn ,r<nr<nr<n,then there are infinited number of non-zero solutions exists in the equations system,also is called as non-trivial solution.
    • all solutions make up a vector space,can be called as solution space, which dimension is n−rn-rnr.
    • if the equations system has non-zero solution,then the basis of solution space can be called as fundamental system of solutions.the general solution can be expressed as a linear combination of fundamental system of solution set .
    • when r=nr = nr=n,the equations system have only zero solution.
  • the following example explain that how to get solution of homogeneous linear equations system.

{x1+2x2−x3=02x1−x2+x3=0\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + x_3 = 0 \end{cases} {x1+2x2x3=02x1x2+x3=0
A=(12−12−11)A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix} A=(122111)
(12−10−53)\begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{pmatrix} (102513)
(101501−35)\begin{pmatrix} 1 & 0 & \frac{1}{5} \\ 0 & 1 & -\frac{3}{5} \end{pmatrix} (10015153)
the rank r=2r = 2r=2,the number of unkown numbern=3n = 3n=3r<nr < nr<n,the non-zero solution exists.
the free variable is x3x_3x3,let x3=5x_3 = 5x3=5
ξ=(−135)\mathbf{\xi} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} ξ=135
finally,the general solution has computed.
k(−135)(k∈R)k \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad(k \in \mathbb{R}) k135(kR)

references

  1. deepseek
  2. 《矩阵论》
http://www.lryc.cn/news/600654.html

相关文章:

  • 7月26日京东秋招第一场第二题
  • 黑屏运维OceanBase数据库的常见案例
  • [2025CVPR:图象合成、生成方向]WF-VAE:通过小波驱动的能量流增强视频 VAE 的潜在视频扩散模型
  • 数据结构预备知识
  • 小电流驱动大电流:原理、实现方式与应用前景
  • Flutter开发实战之动画与交互设计
  • 四通OKI5560SC针式打印机如何复位清零和恢复出厂设置??
  • 航空发动机高速旋转件的非接触式信号传输系统
  • CF每日5题(1500-1600)
  • 网络基础19--OSPF路由业务多区域
  • 【C/C++】explicit_bzero
  • 《Java 程序设计》第 6 章 - 字符串
  • Zookeeper的简单了解
  • 安卓学习记录1——持续更新ing
  • Java基础day17-LinkedHashMap类,TreeMap类和集合工具类
  • linux下变更mysql的数据文件目录
  • 基于粒子群算法优化高斯过程回归(PSO-GPR)的多输出回归
  • 基于MySQL实现基础图数据库
  • React入门指南——指北指南(第二节)
  • SpringMVC相关基础知识
  • RustFS for .NET 演示项目深度解析:构建 S3 兼容的分布式存储应用
  • 计划任务(at和cron命令介绍及操作)
  • 《用于几何广义断层触觉传感的图结构超分辨率:在仿人面部的应用》论文解读
  • 一款基于react-native harmonyOS 封装的【文档】文件预览查看开源库(基于Harmony 原生文件预览服务进行封装)
  • 深入剖析 MetaGPT 中的提示词工程:WriteCode 动作的提示词设计
  • Blender入门笔记(一)
  • 简单实现支付密码的页面及输入效果
  • Sql server查询汇总补缺月份
  • 【iOS】网易云仿写
  • 基于深度学习的胸部 X 光图像肺炎分类系统(七)