全文检索官网示例
链接地址:https://milvus.io/docs/zh/full_text_search_with_milvus.md
full_text_demo:
from typing import List
from __init__ import openai_client
import sysfrom pymilvus import (MilvusClient,DataType,Function,FunctionType,AnnSearchRequest,RRFRanker,
)# Connect to Milvus:连接到 Milvus
uri = "http://ip:19530"
collection_name = "full_text_demo"
client = MilvusClient(uri=uri)
print("连接成功")# sys.exit()analyzer_params = {"tokenizer": "standard", "filter": ["lowercase"]}schema = MilvusClient.create_schema()
schema.add_field(field_name="id",datatype=DataType.VARCHAR,is_primary=True,auto_id=True,max_length=100,
)
schema.add_field(field_name="content",datatype=DataType.VARCHAR,max_length=65535,analyzer_params=analyzer_params,enable_match=True, # Enable text matchingenable_analyzer=True, # Enable text analysis
)
schema.add_field(field_name="sparse_vector", datatype=DataType.SPARSE_FLOAT_VECTOR)
schema.add_field(field_name="dense_vector",datatype=DataType.FLOAT_VECTOR,dim=1536, # Dimension for text-embedding-3-small
)
schema.add_field(field_name="metadata", datatype=DataType.JSON)bm25_function = Function(name="bm25",function_type=FunctionType.BM25,input_field_names=["content"],output_field_names="sparse_vector",
)schema.add_function(bm25_function)# 创建索引
index_params = MilvusClient.prepare_index_params()
index_params.add_index(field_name="sparse_vector",index_type="SPARSE_INVERTED_INDEX",metric_type="BM25",
)
index_params.add_index(field_name="dense_vector", index_type="FLAT", metric_type="IP")if client.has_collection(collection_name):client.drop_collection(collection_name)
client.create_collection(collection_name=collection_name,schema=schema,index_params=index_params,
)
print(f"Collection '{collection_name}' created successfully")# openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "text-embedding-3-small"def get_embeddings(texts: List[str]) -> List[List[float]]:if not texts:return []response = openai_client.embeddings.create(input=texts, model=model_name)return [embedding.embedding for embedding in response.data]# Define indexes
index_params = MilvusClient.prepare_index_params()
index_params.add_index(field_name="sparse_vector",index_type="SPARSE_INVERTED_INDEX",metric_type="BM25",
)
index_params.add_index(field_name="dense_vector", index_type="FLAT", metric_type="IP")# Drop collection if exist
if client.has_collection(collection_name):client.drop_collection(collection_name)
# Create the collection
client.create_collection(collection_name=collection_name,schema=schema,index_params=index_params,
)
print(f"Collection '{collection_name}' created successfully")# Set up OpenAI for embeddings
openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "text-embedding-3-small"# Define embedding generation function for reuse
def get_embeddings(texts: List[str]) -> List[List[float]]:if not texts:return []response = openai_client.embeddings.create(input=texts, model=model_name)return [embedding.embedding for embedding in response.data]# Example documents to insert
documents = [{"content": "Milvus is a vector database built for embedding similarity search and AI applications.","metadata": {"source": "documentation", "topic": "introduction"},},{"content": "Full-text search in Milvus allows you to search using keywords and phrases.","metadata": {"source": "tutorial", "topic": "full-text search"},},{"content": "Hybrid search combines the power of sparse BM25 retrieval with dense vector search.","metadata": {"source": "blog", "topic": "hybrid search"},},
]# Prepare entities for insertion
entities = []
texts = [doc["content"] for doc in documents]
embeddings = get_embeddings(texts)for i, doc in enumerate(documents):entities.append({"content": doc["content"],"dense_vector": embeddings[i],"metadata": doc.get("metadata", {}),})# Insert data
client.insert(collection_name, entities)
print(f"Inserted {len(entities)} documents")# Example query for semantic search
query = "How does Milvus help with similarity search?"# Generate embedding for query
query_embedding = get_embeddings([query])[0]# Semantic search using dense vectors
results = client.search(collection_name=collection_name,data=[query_embedding],anns_field="dense_vector",limit=5,output_fields=["content", "metadata"],
)
dense_results = results[0]# Print results
print("\nDense Search (Semantic):")
for i, result in enumerate(dense_results):print(f"{i+1}. Score: {result['distance']:.4f}, Content: {result['entity']['content']}")