【高等数学】第五章 定积分——第三节 定积分的换元法和分部积分法
上一节:【高等数学】第五章 定积分——第二节 微积分基本公式
总目录:【高等数学】 目录
文章目录
- 1. 定积分的换元法
- 2. 定积分的分部积分法
1. 定积分的换元法
- 定积分的换元法
假设函数f(x)f(x)f(x)在区间[a,b][a,b][a,b]上连续,函数x=φ(t)x=\varphi(t)x=φ(t)满足条件:
(1) φ(α)=a\varphi(\alpha)=aφ(α)=a,φ(β)=b\varphi(\beta)=bφ(β)=b;
(2) φ(t)\varphi(t)φ(t)在[α,β][\alpha,\beta][α,β](或[β,α][\beta,\alpha][β,α])上具有连续导数
则有定积分的换元公式
∫abf(x)dx=∫αβf[φ(t)]φ′(t)dt.\int_{a}^{b} f(x) \mathrm{d}x = \int_{\alpha}^{\beta} f\left[ \varphi(t) \right] \varphi^\prime(t) \mathrm{d}t.∫abf(x)dx=∫αβf[φ(t)]φ′(t)dt.设F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数
∫abf(x)dx=F(b)−F(a)\displaystyle\int_{a}^{b} f(x) \mathrm{d}x =F(b)-F(a)∫abf(x)dx=F(b)−F(a)
记Φ(t)=F[φ(t)]\varPhi(t)=F[\varphi(t)]Φ(t)=F[φ(t)],Φ′(t)=f[φ(t)]φ′(t)\varPhi'(t)=f[\varphi(t)]\varphi'(t)Φ′(t)=f[φ(t)]φ′(t),Φ(t)\varPhi(t)Φ(t)是f[φ(t)]φ′(t)f[\varphi(t)]\varphi'(t)f[φ(t)]φ′(t)的一个原函数
∫αβf[φ(t)]φ′(t)dt=F[φ(β)]−F[φ(α)]=F(b)−F(a)\displaystyle\int_{\alpha}^{\beta} f\left[ \varphi(t) \right] \varphi^\prime(t) \mathrm{d}t=F[\varphi(\beta)]-F[\varphi(\alpha)]=F(b)-F(a)∫αβf[φ(t)]φ′(t)dt=F[φ(β)]−F[φ(α)]=F(b)−F(a) - 注意事项
- 用 x=φ(t)x = \varphi(t)x=φ(t) 把原来变量 xxx 代换成新变量 ttt 时,积分限也要换成相应于新变量 ttt 的积分限
- 求出 f[φ(t)]φ′(t)f\left[ \varphi(t) \right] \varphi^\prime(t)f[φ(t)]φ′(t) 的一个原函数 Φ(t)\Phi(t)Φ(t) 后,不必像计算不定积分那样再要把 Φ(t)\Phi(t)Φ(t) 回代成原来变量 xxx 的函数,而只要把新变量 ttt 的上、下限分别代入 Φ(t)\Phi(t)Φ(t) 中然后相减就行了.
- 如果采用凑微分的方式求定积分,积分限就不必变更
- 对称区间上定积分的奇偶性
- 若f(x)f(x)f(x)在[−a,a][-a,a][−a,a]上连续且为偶函数,则∫−aaf(x)dx=2∫0af(x)dx\int_{-a}^{a} f(x) \mathrm{d}x = 2\int_{0}^{a} f(x) \mathrm{d}x ∫−aaf(x)dx=2∫0af(x)dx
∫−aaf(x)dx=∫−a0f(x)dx+∫0af(x)dx.\displaystyle\int_{-a}^{a} f(x) \mathrm{d}x = \int_{-a}^{0} f(x) \mathrm{d}x + \int_{0}^{a} f(x) \mathrm{d}x.∫−aaf(x)dx=∫−a0f(x)dx+∫0af(x)dx.
令t=−xt=-xt=−x,则∫−a0f(x)dx=∫0af(−t)dt=∫0af(t)dt=∫0af(x)dx\displaystyle\int_{-a}^{0} f(x) \mathrm{d}x=\int_{0}^{a} f(-t) \mathrm{d}t=\int_{0}^{a} f(t) \mathrm{d}t=\int_{0}^{a} f(x) \mathrm{d}x∫−a0f(x)dx=∫0af(−t)dt=∫0af(t)dt=∫0af(x)dx - 若f(x)f(x)f(x)在[−a,a][-a,a][−a,a]上连续且为奇函数,则∫−aaf(x)dx=0.\int_{-a}^{a} f(x) \mathrm{d}x = 0.∫−aaf(x)dx=0.
- 若f(x)f(x)f(x)在[−a,a][-a,a][−a,a]上连续且为偶函数,则∫−aaf(x)dx=2∫0af(x)dx\int_{-a}^{a} f(x) \mathrm{d}x = 2\int_{0}^{a} f(x) \mathrm{d}x ∫−aaf(x)dx=2∫0af(x)dx
- 三角函数积分对称
设f(x)f(x)f(x)在[0,1][0,1][0,1]上连续- ∫0π2f(sinx)dx=∫0π2f(cosx)dx\displaystyle\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} f(\cos x) \mathrm{d}x∫02πf(sinx)dx=∫02πf(cosx)dx
令x=π2−tx=\dfrac{\pi}{2}-tx=2π−t
∫0π2f(sinx)dx=∫0π2f[sin(π2−t)]dt=∫0π2f(cost)dt\displaystyle\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d}x =\int_{0}^{\frac{\pi}{2}}f[\sin(\dfrac{\pi}{2}-t)]\mathrm{d}t=\int_{0}^{\frac{\pi}{2}}f(\cos t)\mathrm{d}t∫02πf(sinx)dx=∫02πf[sin(2π−t)]dt=∫02πf(cost)dt - ∫0πxf(sinx)dx=π2∫0πf(sinx)dx\displaystyle\int_{0}^{\pi} x f(\sin x) \mathrm{d}x = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \mathrm{d}x∫0πxf(sinx)dx=2π∫0πf(sinx)dx
令x=π−tx=\pi-tx=π−t
∫0πxf(sinx)dx=∫0π(π−t)f[sin(π−t)]dt=π∫0πf(sinx)dx−∫0πxf(sinx)dx\displaystyle\int_{0}^{\pi} x f(\sin x) \mathrm{d}x =\int_{0}^{\pi}(\pi-t)f[\sin(\pi-t)]\mathrm{d}t=\pi\int_{0}^{\pi} f(\sin x) \mathrm{d}x-\int_{0}^{\pi} xf(\sin x) \mathrm{d}x∫0πxf(sinx)dx=∫0π(π−t)f[sin(π−t)]dt=π∫0πf(sinx)dx−∫0πxf(sinx)dx
- ∫0π2f(sinx)dx=∫0π2f(cosx)dx\displaystyle\int_{0}^{\frac{\pi}{2}} f(\sin x) \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} f(\cos x) \mathrm{d}x∫02πf(sinx)dx=∫02πf(cosx)dx
- 周期函数的定积分性质
- ∫aa+Tf(x)dx=∫0Tf(x)dx\displaystyle\int_{a}^{a + T} f(x) \mathrm{d}x = \int_{0}^{T} f(x) \mathrm{d}x∫aa+Tf(x)dx=∫0Tf(x)dx
记Φ(a)=∫aa+Tf(x)dx\varPhi(a)=\displaystyle\int_{a}^{a + T} f(x) \mathrm{d}xΦ(a)=∫aa+Tf(x)dx
Φ′(a)=f(a+T)−f(a)=0,Φ(a)=Φ(0)\varPhi'(a)=f(a+T)-f(a)=0,\varPhi(a)=\varPhi(0)Φ′(a)=f(a+T)−f(a)=0,Φ(a)=Φ(0) - ∫aa+nTf(x)dx=n∫0Tf(x)dx(n∈N)\displaystyle\int_{a}^{a + nT} f(x) \mathrm{d}x = n \int_{0}^{T} f(x) \mathrm{d}x \quad (n \in \mathbf{N})∫aa+nTf(x)dx=n∫0Tf(x)dx(n∈N)
- ∫aa+Tf(x)dx=∫0Tf(x)dx\displaystyle\int_{a}^{a + T} f(x) \mathrm{d}x = \int_{0}^{T} f(x) \mathrm{d}x∫aa+Tf(x)dx=∫0Tf(x)dx
2. 定积分的分部积分法
- 定积分的分部积分公式
∫abudv=[uv]ab−∫abvdu\int_{a}^{b} u \mathrm{d}v = \left[uv \right]_{a}^{b} - \int_{a}^{b} v \mathrm{d}u∫abudv=[uv]ab−∫abvdu
下一节:
总目录:【高等数学】 目录