当前位置: 首页 > news >正文

RTDETR融合CFFormer中的FeatureCorrection_s2c模块


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《CFFormer: A Cross-Fusion Transformer Framework for the Semantic Segmentation of Multisource Remote Sensing Images》

一、 模块介绍

        论文链接:https://ieeexplore.ieee.org/document/10786275

        代码链接:https://github.com/masurq/CFFormer/tree/master

论文速览:

        多源遥感图像(RSIs)能够捕捉地面物体的互补信息,用于语义分割。然而,来自不同传感器的多模态数据之间可能存在不一致性和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用其互补特征,是一个挑战。在本文中,我们提出了一种用于多源遥感图像语义分割的通用跨融合变压器框架(CFFormer),采用并行双流结构分别从不同模态中提取特征。我们引入了一个特征校正模块(FCM),通过结合其他模态的特征,在空间和通道维度上校正当前模态的特征。在特征融合模块(FFM)中,我们采用多头交叉注意力机制进行全局交互和融合不同模态的特征,从而能够全面利用多源遥感图像中的互补信息。最后,对比实验表明,所提出的 CFFormer 框架不仅达到了最先进的(SOTA)精度,而且与当前用于多源遥感图像语义分割的先进网络相比,还表现出出色的鲁棒性。

总结:本文更新其中的FeatureCorrection_s2c模块。


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

RT-DETR更新汇总贴(含免费教程)文章浏览阅读264次。RT-DETR使用教程:缝合教程: RT-DETR中的yaml文件详解:labelimg使用教程:_rt-deterhttps://xy2668825911.blog.csdn.net/article/details/143696113

二、二创融合模块

2.1 相关代码

# https://blog.csdn.net/StopAndGoyyy?spm=1011.2124.3001.5343
# https://ieeexplore.ieee.org/document/10786275
class ChannelWeights(nn.Module):def __init__(self, dim, reduction=1):super(ChannelWeights, self).__init__()self.dim = dimself.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.mlp = nn.Sequential(nn.Linear(self.dim * 6, self.dim * 6 // reduction),nn.ReLU(inplace=True),nn.Linear(self.dim * 6 // reduction, self.dim * 2),nn.Sigmoid())def forward(self, x1, x2):B, _, H, W = x1.shapex = torch.cat((x1, x2), dim=1)avg = self.avg_pool(x).view(B, self.dim * 2)std = torch.std(x, dim=(2, 3), keepdim=True).view(B, self.dim * 2)max = self.max_pool(x).view(B, self.dim * 2)y = torch.cat((avg, std, max), dim=1)  # B 6Cy = self.mlp(y).view(B, self.dim * 2, 1)channel_weights = y.reshape(B, 2, self.dim, 1, 1).permute(1, 0, 2, 3, 4)  # 2 B C 1 1return channel_weightsclass SpatialWeights(nn.Module):def __init__(self, dim, reduction=1):super(SpatialWeights, self).__init__()self.dim = dimself.mlp = nn.Sequential(nn.Conv2d(self.dim * 2, self.dim // reduction, kernel_size=1),nn.ReLU(inplace=True),nn.Conv2d(self.dim // reduction, 2, kernel_size=1),nn.Sigmoid())def forward(self, x1, x2):B, _, H, W = x1.shapex = torch.cat((x1, x2), dim=1)  # B 2C H Wspatial_weights = self.mlp(x).reshape(B, 2, 1, H, W).permute(1, 0, 2, 3, 4)  # 2 B 1 H Wreturn spatial_weights# 先空间校正再通道校正
class FeatureCorrection_s2c(nn.Module):def __init__(self, dim, reduction=1, eps=1e-8):super(FeatureCorrection_s2c, self).__init__()# 自定义可训练权重参数self.weights = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)self.eps = epsself.spatial_weights = SpatialWeights(dim=dim, reduction=reduction)self.channel_weights = ChannelWeights(dim=dim, reduction=reduction)self.apply(self._init_weights)@classmethoddef _init_weights(cls, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x1, x2 = xweights = nn.ReLU()(self.weights)fuse_weights = weights / (torch.sum(weights, dim=0) + self.eps)spatial_weights = self.spatial_weights(x1, x2)x1_1 = x1 + fuse_weights[0] * spatial_weights[1] * x2x2_1 = x2 + fuse_weights[0] * spatial_weights[0] * x1channel_weights = self.channel_weights(x1_1, x2_1)main_out = x1_1 + fuse_weights[1] * channel_weights[1] * x2_1aux_out = x2_1 + fuse_weights[1] * channel_weights[0] * x1_1return torch.cat([main_out, aux_out], dim=1)

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

​​

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, CCRI, [128, 5, True, False]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 4, CCRI, [256, 3, True, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 4, CCRI, [512, 3, True, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, CCRI, [1024, 3, True, False]]head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [128, 1, 1]] # 11, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 2, RepC4, [256]] # 15, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 2, RepC4, [128]] # X3 (20), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0- [[-1, 16], 1, Concat, [1]] # cat Y4- [-1, 2, RepC4, [128]] # F4 (23), pan_blocks.0- [-1, 1, Conv, [128, 3, 2]] # 24, downsample_convs.1- [[-1, 11], 1, FeatureCorrection_s2c, [1]] # cat Y5- [-1, 2, RepC4, [128]] # F5 (26), pan_blocks.1- [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')# model.load('yolov8n.pt')model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,amp=True, mosaic=False, project='runs/train', name='exp')

​​

         在train.py脚本中填入修改好的yaml路径,运行即可训。

​​


http://www.lryc.cn/news/588748.html

相关文章:

  • 下一代防火墙-web防护
  • Android弹窗
  • 2025牛客暑期多校训练记录
  • Ubuntu 22.04 安装 mysql-server服务端
  • Gartner《JavaScript: Top Use Cases, Frameworks and Architecture Constraints》学习心得
  • Java基础教程(009): Java 的封装
  • 约数之和其中数论的作用
  • 【前端】Vue 3 页面开发标准框架解析:基于实战案例的完整指南
  • SpringBoot 项目搭建的 4 种常用方式,从入门到实践
  • Android 多语言适配(I18n)
  • ICCV 2025满分论文:一个模型实现空间理解与主动探索大统一
  • 原型继承(prototypal inheritance)的工作原理
  • AOP简化MyBatis分页:高效自动化方案
  • 解决 Node.js 版本不兼容问题:深入理解 `yarn install --ignore-engines`
  • 【前后端】Node.js 模块大全
  • 2025.7.15总结
  • Linux 环境下安装 Node.js v16.13.0 完整指南
  • kimi-k2模型配置参数
  • Linux操作系统从入门到实战(九)Linux开发工具(中)自动化构建-make/Makefile知识讲解
  • CSS从入门到起飞!零基础小白的必修课
  • 【Java】JUC并发(线程的方法、多线程的同步并发)
  • 微信小程序:在ios中border边框显示不全
  • 飞睿UWB超宽带定位测距技术,数字钥匙重塑智能生活,高精度厘米级定位无感解锁
  • 公网ip到服务器流程
  • 2025年最新香港站群服务器租用价格参考
  • 从零开始的云计算生活——第三十二天,四面楚歌,HAProxy负载均衡
  • 【工程篇】07:如何打包conda环境并拷贝到另一台服务器上
  • Racknerd服务器Ubuntu
  • Datawhale 25年7月组队学习coze-ai-assistant Task1学习笔记:动手实践第一个AI Agent—英伦生活口语陪练精灵
  • 阿里云ssh证书过期,如果更换并上传到服务器