当前位置: 首页 > news >正文

Python优化算法—遗传算法

Python优化算法—遗传算法

  • 一、前言
  • 二、安装
  • 三、遗传算法
    • 3.1 自定义函数
    • 3.2 遗传算法进行整数规划
    • 3.3 遗传算法用于旅行商问题
    • 3.4 使用遗传算法进行曲线拟合

一、前言

优化算法,尤其是启发式的仿生智能算法在最近很火,它适用于解决管理学,运筹学,统计学里面的一些优化问题。比如线性规划,整数规划,动态规划,非线性约束规划,甚至是超参数搜索等等方向的问题。

但是一般的优化算法还是matlab里面用的多,Python相关代码较少。

我在参考了一些文章的代码和模块之后,决定学习scikit-opt这个模块。这个优化算法模块对新手很友好,代码简洁,上手简单。而且代码和官方文档是中国人写的,还有很多案例,学起来就没什么压力。

缺点是包装的算法种类目前还不算多,只有七种:(差分进化算法、遗传算法、粒子群算法、模拟退火算法、蚁群算法、鱼群算法、免疫优化算法)

本次带来的是数学建模里面经常使用的遗传算法的使用演示。

二、安装

首先安装模块,在cmd里面或者anaconda prompt里面输入:

pip install scikit-opt

对于当前开发人员版本:

git clone git@github.com:guofei9987/scikit-opt.git
cd scikit-opt
pip install .

三、遗传算法

3.1 自定义函数

UDF(用户定义函数)现已推出!

例如,您刚刚制定了一种新型函数。现在,你的函数是这样的:
f=0.5+sin2(x12+x22)−0.51+0.001(x12+x22)f = 0.5 + \frac{sin^2(x_1^2 + x_2^2) - 0.5}{1 + 0.001 (x_1^2 + x_2^2)} f=0.5+1+0.001(x12+x22)sin2(x12+x22)0.5

该函数有大量的局部最小值,具有很强的冲击力,在(0,0) 处的全局最小值,值为 0。

import numpy as np
def schaffer(p):x1, x2 = px = np.square(x1) + np.square(x2)return 0.5 + (np.square(np.sin(x)) - 0.5) / np.square(1 + 0.001 * x)

导入和构建 ga :(遗传算法)

from sko.GA import GA
ga = GA(func=schaffer, n_dim = 2, size_pop = 100, max_iter = 800, prob_mut = 0.001, lb = [-1, -1], ub = [1, 1], precision = 1e-7)
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)

运行结果为:

在这里插入图片描述
可以看到基本找到了全局最小值和对应的x 。

画出迭代次数的图:

import pandas as pd
import matplotlib.pyplot as plt
Y_history = pd.DataFrame(ga.all_history_Y)
fig, ax = plt.subplots(2, 1)
ax[0].plot(Y_history.index, Y_history.values, '.', color = 'red')
Y_history.min(axis = 1).cummin().plot(kind = 'line')
plt.show()

在这里插入图片描述

GA算法的参数详解:

输入参数:

输入参数默认值参数的意义
func-目标函数
n_dim-目标函数的维度
size_pop50种群规模
max_iter200最大迭代次数
prob_mut0.001变异概率
lb-1每个自变量的最小值
ub1每个自变量的最大值
constraint_eq空元组等式约束
constraint_ueq空元组不等式约束
precision1e-7精确度,int / float或者它们组成的列表

输出参数:

GA & GA_TSP

输出参数参数的意义
ga.generation_best_X每一代的最优函数值对应的输入值
ga.generation_best_Y每一代的最优函数值
ga.all_history_FitV每一代的每个个体的适应度
ga.all_history_Y每一代每个个体的函数值

3.2 遗传算法进行整数规划

在多维优化时,想让哪个变量限制为整数,就设定 precision 为 整数 即可。

例如,我想让我的自定义函数的某些变量限制为整数+浮点数(分别是整数,整数,浮点数),那么就设定 precision=[1, 1, 1e-7]

例子如下:

from sko.GA import GA
demo_func = lambda x: (x[0] - 1) ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
ga = GA(func = demo_func, n_dim = 3, max_iter = 500, lb = [-1, -1, -1], ub = [5, 1, 1], precision = [1,1,1e-7])
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)

在这里插入图片描述

可以看到第一个、第二个变量都是整数,第三个就是浮点数了 。

3.3 遗传算法用于旅行商问题

商旅问题(TSP)就是路径规划的问题,比如有很多城市,你都要跑一遍,那么先去哪个城市再去哪个城市可以让你的总路程最小。

实际问题需要一个城市坐标数据,比如你的出发点位置为(0,0),第一个城市离位置为(x1,y1)(x_1,y_1)x1,y1,第二个为(x2,y2)(x_2,y_2)x2,y2…这里没有实际数据,就直接随机生成了。

import numpy as np
from scipy import spatial
import matplotlib.pyplot as plt
num_points = 50
points_coordinate = np.random.rand(num_points, 2)  # generate coordinate of points
points_coordinate

在这里插入图片描述

这里定义的是50个城市,每个城市的坐标都在是上图随机生成的矩阵。

然后我们把它变成类似相关系数里面的矩阵:

distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric='euclidean')
distance_matrix.shape
(50, 50)

这个矩阵就能得出每个城市之间的距离,算上自己和自己的距离(0),总共有2500个数。

定义问题:

def cal_total_distance(routine):num_points, = routine.shapereturn sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)])

求解问题:

from sko.GA import GA_TSP
ga_tsp = GA_TSP(func = cal_total_distance, n_dim = num_points, size_pop = 50, max_iter = 500, prob_mut = 1)
best_points, best_distance = ga_tsp.run()

我们展示一下结果:

best_distance

在这里插入图片描述

画图查看计算出来的路径,还有迭代次数和y的关系:

fig, ax = plt.subplots(1, 2,figsize = (12, 8))
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
ax[1].plot(ga_tsp.generation_best_Y)
plt.show()

在这里插入图片描述

3.4 使用遗传算法进行曲线拟合

构建数据集:

import numpy as np
import matplotlib.pyplot as plt
from sko.GA import GA
x_true = np.linspace(-1.2, 1.2, 30)
y_true = x_true ** 3 - x_true + 0.4 * np.random.rand(30)
plt.plot(x_true, y_true, 'o')

构建的数据是y=x3−x+0.4y=x^3-x+0.4y=x3x+0.4,然后加上了随机扰动项。如图:
在这里插入图片描述
定义需要拟合的函数(三次函数),然后将残差作为目标函数去求解:

def f_fun(x, a, b, c, d):return a * x ** 3 + b * x ** 2 + c * x + d   #三次函数def obj_fun(p):a, b, c, d = presiduals = np.square(f_fun(x_true, a, b, c, d) - y_true).sum()return residuals

求解:

ga = GA(func = obj_fun, n_dim = 4, size_pop = 100, max_iter = 500, lb = [-2] * 4, ub = [2] * 4)
best_params, residuals = ga.run()
print('best_x:', best_params, '\n', 'best_y:', residuals)

在这里插入图片描述

可以看到拟合出来的方程为y=0.9656x3−0.0065x2−1.0162x+0.2162y=0.9656x^{3}-0.0065x^{2}-1.0162x+0.2162y=0.9656x30.0065x21.0162x+0.2162

画出拟合线:

y_predict = f_fun(x_true, *best_params)
fig, ax = plt.subplots()
ax.plot(x_true, y_true, 'o')
ax.plot(x_true, y_predict, '-')
plt.show()

在这里插入图片描述

http://www.lryc.cn/news/7113.html

相关文章:

  • 数据埋点(Data buried point)的应用价值剖析
  • 一文弄懂硬链接、软链接、复制的区别
  • 界面组件Telerik ThemeBuilder R1 2023开创应用主题研发新方式!
  • 在FederatedScope 如何查看clientserver之间的传递的参数大小(通讯量)? 对源码的探索记录
  • 2023爱分析 · 数据科学与机器学习平台厂商全景报告 | 爱分析报告
  • 20230215_数据库过程_高质量发展
  • 【百度 JavaScript API v3.0】LocalSearch 位置检索、Autocomplete 结果提示
  • 运用Facebook投放,如何制定有效的竞价策略?
  • 大数据框架之Hadoop:HDFS(五)NameNode和SecondaryNameNode(面试开发重点)
  • 计算机网络 - 1. 体系结构
  • 银行业上云进行时,OLAP 云服务如何解决传统数仓之痛?
  • 特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】
  • 【2023最新教程】从0到1开发自动化测试框架(0基础也能看懂)
  • linux备份命令小记 —— 筑梦之路
  • vue项目(vue-cli)配置环境变量和打包时区分开发、测试、生产环境
  • Python 命名规范
  • 操作系统——2.操作系统的特征
  • 【计算机网络期末复习】第六章 应用层
  • TypeScript基本教程
  • 使用Windows API实现本地音频采集
  • 实用的费曼学习法 | 一些思考
  • Linux安装Docker配置docker-compose 编排工具【超详细】
  • iTerm2 + Oh My Zsh 打造舒适终端体验
  • 【scipy.sparse】diags()和dia_matrix()的区别
  • java ssm自行车在线租赁系统idea
  • GAN和CycleGAN
  • 源码项目中常见设计模式及实现
  • KDNM5000-10A-2剩余电流保护器测试仪
  • C++实现线程池
  • 2023最新Java面试手册(性能优化+微服务架构+并发编程+开源框架)