当前位置: 首页 > news >正文

区间预测 | MATLAB实现QRCNN卷积神经网络分位数回归时间序列区间预测

区间预测 | MATLAB实现QRCNN卷积神经网络分位数回归时间序列区间预测

目录

    • 区间预测 | MATLAB实现QRCNN卷积神经网络分位数回归时间序列区间预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

区间预测 | MATLAB实现QRCNN卷积神经网络分位数回归时间序列区间预测
1.Matlab实现基于QRCNN分位数回归卷积神经网络的时间序列区间预测模型;
2.多图输出、多指标输出(MAE、RMSE、MSE、R2),多输入单输出,含不同置信区间图、概率密度图;
3.data为数据集,功率数据集,用过去一段时间的变量,预测目标,目标为最后一列,也可适用于负荷预测、风速预测;MainQRCNNTS为主程序,其余为函数文件,无需运行;
4.代码质量高,注释清楚,含数据预处理部分,处理缺失值,如果为nan,用上一行替代,也含核密度估计。

模型描述

QRCNN是一种基于卷积神经网络(CNN)的分位数回归模型,用于时间序列区间预测。其全称为Quantile Regression Convolutional Neural Network。该模型可以用于预测时间序列数据的不同分位数,例如预测股票价格的上下限、风速的极值等。由于QRCNN采用卷积神经网络的结构,可以有效地捕捉时间序列数据的局部和全局特征,从而提高预测准确性。
QRCNN模型的主要思想是将时间序列数据分解成一系列窗口,并将每个窗口视为一个图像。然后,使用卷积神经网络对这些图像进行特征提取和分析,最终输出每个分位数的预测结果。QRCNN模型的训练过程采用分位数损失函数,以最小化所有分位数的预测误差。

QRCNN模型的优点包括:
能够有效地处理时间序列数据的不确定性和非线性特征;
能够同时预测多个分位数,从而提供更全面的预测结果;
可以灵活地处理不同长度的时间序列数据。
总之,QRCNN模型是一种用于时间序列区间预测的强大工具,可以帮助人们更好地理解和应用时间序列数据。
QRCNN模型的公式包括输入层、卷积层、池化层、全连接层和输出层。以下是QRCNN模型的主要公式:

输入层:
假设时间序列数据为 x t x_t xt,则输入层将每个时间步 t t t的数据作为一个输入节点 x t x_t xt
卷积层:
假设第 k k k个卷积核的大小为 d k d_k dk,则第 k k k个卷积层的输出 z k z_k zk可以表示为:

z k = σ ( W k ∗ x + b k ) z_k=\sigma(W_k * x+b_k) zk=σ(Wkx+bk)

其中, W k W_k Wk是第 k k k个卷积核的权重矩阵, ∗ * 表示卷积操作, b k b_k bk是偏置项, σ \sigma σ是激活函数,通常使用ReLU或tanh函数。
池化层:
假设第 k k k个池化操作的大小为 m k m_k mk,则第 k k k个池化层的输出 y k y_k yk可以表示为:

y k = m a x p o o l ( z k ) y_k=maxpool(z_k) yk=maxpool(zk)

其中, m a x p o o l maxpool maxpool表示最大池化操作。
全连接层:
假设第 l l l个全连接层的输出为 h l h_l hl,则第 l l l个全连接层的输出 h l h_l hl可以表示为:

h l = σ ( W l ∗ h l − 1 + b l ) h_l=\sigma(W_l*h_{l-1}+b_l) hl=σ(Wlhl1+bl)

其中, W l W_l Wl是第 l l l个全连接层的权重矩阵, b l b_l bl是偏置项, σ \sigma σ是激活函数。
输出层:
假设要预测 q q q个分位数,第 q q q个分位数为 τ q \tau_q τq,则输出层的输出 y q y_q yq可以表示为:

y q = F τ q ( h L ) y_q=F_{\tau_q}(h_L) yq=Fτq(hL)

其中, F τ q ( h L ) F_{\tau_q}(h_L) Fτq(hL)表示第 L L L层的输出 h L h_L hL在分位数 τ q \tau_q τq处的累积分布函数(CDF)。
损失函数:
QRCNN模型采用分位数损失函数,定义为:

L τ ( y , y ^ ) = ( 1 − τ ) ∣ y − y ^ ∣ ( y ≤ y ^ ) + τ ∣ y − y ^ ∣ ( y > y ^ ) L_{\tau}(y,\hat{y})=(1-\tau)|y-\hat{y}|{(y\le \hat{y})}+\tau|y-\hat{y}|{(y> \hat{y})} Lτ(y,y^)=(1τ)yy^(yy^)+τyy^(y>y^)

其中, y y y表示实际值, y ^ \hat{y} y^表示预测值, τ \tau τ表示分位数, ∣ ⋅ ∣ ( ⋅ ) | \cdot |_{(\cdot)} ()表示指示函数。
最终,QRCNN模型的目标是最小化所有分位数的预测误差的总和,即:

m i n ∑ i = 1 n ∑ q = 1 Q L τ q ( y i , y i ^ ) min \sum_{i=1}^{n}\sum_{q=1}^{Q}L_{\tau_q}(y_i,\hat{y_i}) mini=1nq=1QLτq(yi,yi^)

其中, n n n表示样本数量, Q Q Q表示分位数个数。

程序设计

  • 完整程序和数据获取方式:私信博主。
% Divide the data into training and validation data sets
numTrainFiles = 90;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
% Define the convolutional neural network architecture.
layers = [
% Image Input Layer An imageInputLayer imageInputLayer([64 64 1])
% Convolutional Layer 
convolution2dLayer(3,8,'Padding','same')
% Batch Normalization batchNormalizationLayer
% ReLU Layer The batchreluLayer
% Max Pooling Layer  % More values means less weightsmaxPooling2dLayer(4,'Stride',4)%------------------------------convolution2dLayer(3,8,'Padding','same')batchNormalizationLayerreluLayermaxPooling2dLayer(5,'Stride',5)convolution2dLayer(3,8,'Padding','same')batchNormalizationLayerreluLayer
% Fully Connected Layer (Number of Classes) fullyConnectedLayer(8)
% Softmax Layer softmaxLayer
% Classification Layer The final layer classificationLayer];
% Specify the training options
options = trainingOptions('sgdm', ...'InitialLearnRate',0.001, ...'MaxEpochs',20, ...'Shuffle','every-epoch', ...'ValidationData',imdsValidation, ...'ValidationFrequency',8, ...'Verbose',false, ...'Plots','training-progress');
% Train the network 
[net,info]= trainNetwork(imdsTrain,layers,options);% Converting Serial Network to an Object
netobj = net.saveobj;
% Extracting Fully Connected Layer's Weights To Evolve
FullConn=netobj.Layers(13, 1).Weights;
netbias=netobj.Layers(13, 1).Bias;%% Data for Each Weight
sizefinal=size(FullConn);
sizefinal=sizefinal(1,1);
for i=1:sizefinal
Inputs=FullConn(i,:);
Targets=Inputs;
data.Inputs=Inputs;
data.Targets=Targets;
datam{i}=JustLoad(data);
end;————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/128252426

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

http://www.lryc.cn/news/65997.html

相关文章:

  • 【AI 导航网站】为了更好的收集 AI 资源,我开发了一个 AI 导航网站
  • 谈谈HMI 的自动化生成技术
  • docker安装elasticsearch
  • Docker:使用dockerFile创建镜像(war包和jar包)
  • 2.基础篇
  • 取代你的可能不是AI,而是比你更会使用AI的人
  • NECCS|全国大学生英语竞赛C类|词汇和语法|语法题|时态 非谓语动词 |19:00~20:15|完形填空·词性转化
  • 【高等数学笔记】Stolz定理
  • 【24】核心易中期刊推荐——图像处理研究大数据及智能处理研究
  • Codeforces Round 870 (Div. 2)【A、B、C、D】
  • BetaFlight统一硬件AOCODARC H7DUAL配置文件讨论
  • 力扣题库刷题笔记682-棒球比赛
  • SpringCloud------Eureka修改实例显示信息、服务发现Discovery、自我保护(六)
  • Java 远程debug,IDEA 远程 Debug 调试
  • 将webrtc的音频模式改为共享模式
  • 电脑cpu占用率高?怎么办?1分钟快速解决!
  • 使用JPA自动生成代码(轻松上手看了就会版)
  • jdk动态代理
  • 备忘录模式
  • 问题解决:跨域访问错误
  • 程序员应该怎么自学才能入门 ?我来聊聊自己的经历
  • 听我一句劝,别去外包,干了6年,废了....
  • leetcode 88 合并两个有序数组
  • 软件项目成本控制的5大关键点 不得不重视
  • CSS样式更改:边框Border的另类用法
  • shell的灵活运用 (函数,关联数组,循环,awk,sed等)
  • 大疆无人机 MobileSDK(遥控器/手机端)开发 v4版<1>
  • mysql数据库之事务
  • 安装运行Hyperf
  • 回收站文件恢复,分享4个巧妙解决方法!