当前位置: 首页 > news >正文

人工智能中的(特征选择)数据过滤方法和包裹方法

在人工智能(AI)和机器学习中,“数据过滤方法”和“包裹方法”是两种常见的特征选择技术,用于提高模型性能、减少计算成本,并增强模型的可解释性。下面我来详细解释一下它们的含义和区别:

🧹 数据过滤方法(Filter Methods)

定义:在建模之前,独立地评估每个特征与目标变量之间的关系,选择最相关的特征。

特点

  • 与模型无关(模型不可知)

  • 快速、计算效率高

  • 适用于高维数据(如文本或基因数据)

常见方法

  • 方差阈值(Variance Threshold):去除方差过低的特征

  • 相关系数(如皮尔逊相关):选择与目标变量相关性高的特征

  • 卡方检验(Chi-square test):用于分类任务

  • 信息增益(Information Gain):用于评估特征对目标变量的信息贡献

优点

  • 简单快速

  • 不依赖具体模型

  • 可用于预处理阶段

缺点

  • 忽略特征之间的交互

  • 可能选出对模型实际效果不佳的特征

🎁 包裹方法(Wrapper Methods)

定义:将特征选择过程与模型训练结合起来,通过评估模型在不同特征子集上的表现来选择最佳特征组合。

特点

  • 与模型紧密结合

  • 计算成本高

  • 更能捕捉特征之间的相互作用

常见方法

  • 递归特征消除(RFE, Recursive Feature Elimination)

  • 前向选择(Forward Selection)

  • 后向消除(Backward Elimination)

  • 穷举搜索(Exhaustive Search)

优点

  • 考虑特征之间的组合效果

  • 通常能得到更优的特征子集

缺点

  • 计算代价高,尤其在特征维度高时

  • 可能容易过拟合

🧠 举个例子来理解

假设你在做一个预测学生考试成绩的模型:

  • 过滤方法可能会告诉你“学习时间”和“睡眠时间”与成绩高度相关,因此你保留它们。

  • 包裹方法则会尝试不同的特征组合,比如“学习时间 + 上课出勤率”或“睡眠时间 + 饮食习惯”,然后看哪组特征让模型表现最好。

http://www.lryc.cn/news/623048.html

相关文章:

  • Linux 下 安装 matlab 2025A
  • 安卓11 12系统修改定制化_____修改系统 解锁system分区 去除data加密 自由删减系统应用
  • python线程学习
  • Leetcode 14 java
  • AI 云电竞游戏盒子:从“盒子”到“云-端-芯”一体化竞技平台的架构实践
  • WSL 配置文件 wsl.conf 设置
  • Windows 基于ACL(访问控制列表)的权限管理
  • LeetCode 55.跳跃游戏:贪心策略下的可达性判断
  • Windows 操作系统 - Windows 恢复浏览器标题栏颜色
  • tensorrt-llm0.20.0:Prometheus3.5.0通过间接采集,进行性能指标分析
  • AirReceiverLite:轻松实现手机隔空投屏
  • 自动驾驶中的传感器技术24.1——Camera(16)
  • 电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
  • 40 C++ STL模板库9-容器2-vector
  • 下载数据集文件夹权限错误问题解决方案
  • PHP域名授权系统网站源码/授权管理工单系统/精美UI/附教程
  • 西门子SMART PLC监控时间戳问题BUG修复
  • weapp:按钮去除背景
  • 云计算-Kubernetes+Istio 实现金丝雀发布:流量管理、熔断、流量镜像、ingreess、污点及pv案例实战
  • leetcode_42 接雨水
  • H20芯片与中国的科技自立:一场隐形的博弈
  • 内网穿透实战笔记 1panel 面板部署 frps,Windows 部署 frpc
  • Win11和Win10共享打印机提示709用添加Windows凭据来解决的小方法
  • 自适应阈值二值化参数详解 ,计算机视觉,图片处理 邻域大小 调整常数(C=3)和可视化调节参数的应用程序
  • vscode中用python调用matlab的函数(环境安装)
  • 计算机网络:(十五)TCP拥塞控制与拥塞控制算法深度剖析
  • 安全审计-firewall防火墙
  • 在STM32F103上进行FreeRTOS移植和配置(STM32CubeIDE)
  • MySQL的《Buffer-pool》和《连接池》介绍
  • LangChain4j:基于 SSE 与 Flux 的 AI 流式对话实现方案