当前位置: 首页 > news >正文

[机器学习]08-基于逻辑回归模型的鸢尾花数据集分类

使用sklearnLogisticRegression多分类模型

程序代码:

import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import datasets
from sklearn import preprocessing
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipelinedf = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=0)
x = df.values[:, :-1]
y = df.values[:, -1]
print('x = \n', x)
print('y = \n', y)
le = preprocessing.LabelEncoder()
le.fit(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])
print(le.classes_)
y = le.transform(y)
print('Last Version, y = \n', y)x = x[:, 0:2]
print(x)
print(y)
#x = StandardScaler().fit_transform(x)
lr = LogisticRegression()   # Logistic回归模型
lr.fit(x, y.ravel())        # 根据数据[x,y],计算回归参数X = x
Y = y
N, M = 500, 500     # 横纵各采样多少个值
x1_min, x1_max = X[:, 0].min(), X[:, 0].max()   # 第0列的范围
x2_min, x2_max = X[:, 1].min(), X[:, 1].max()   # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2)                    # 生成网格采样点
x_test = np.stack((x1.flat, x2.flat), axis=1)   # 测试点
print(x_test)cm_light = mpl.colors.ListedColormap(['#009933', '#ff6666', '#33ccff'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = lr.predict(x_test)       # 预测值
y_hat = y_hat.reshape(x1.shape)                 # 使之与输入的形状相同
plt.pcolormesh(x1, x2, y_hat)     # 预测值的显示
plt.scatter(X[:, 0], X[:, 1], c=Y.ravel(), edgecolors='k', s=50, cmap=cm_dark)
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
plt.show()

运行结果:

x = 
[[4.9 3.0 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5.0 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5.0 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3.0 1.4 0.1]
[4.3 3.0 1.1 0.1]
[5.8 4.0 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1.0 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5.0 3.0 1.6 0.2]
[5.0 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.0 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.1 1.5 0.1]
[4.4 3.0 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5.0 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5.0 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3.0 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5.0 3.3 1.4 0.2]
[7.0 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4.0 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1.0]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5.0 2.0 3.5 1.0]
[5.9 3.0 4.2 1.5]
[6.0 2.2 4.0 1.0]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3.0 4.5 1.5]
[5.8 2.7 4.1 1.0]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4.0 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3.0 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3.0 5.0 1.7]
[6.0 2.9 4.5 1.5]
[5.7 2.6 3.5 1.0]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1.0]
[5.8 2.7 3.9 1.2]
[6.0 2.7 5.1 1.6]
[5.4 3.0 4.5 1.5]
[6.0 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3.0 4.1 1.3]
[5.5 2.5 4.0 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3.0 4.6 1.4]
[5.8 2.6 4.0 1.2]
[5.0 2.3 3.3 1.0]
[5.6 2.7 4.2 1.3]
[5.7 3.0 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3.0 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6.0 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3.0 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3.0 5.8 2.2]
[7.6 3.0 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2.0]
[6.4 2.7 5.3 1.9]
[6.8 3.0 5.5 2.1]
[5.7 2.5 5.0 2.0]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3.0 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6.0 2.2 5.0 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2.0]
[7.7 2.8 6.7 2.0]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6.0 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3.0 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3.0 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2.0]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3.0 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6.0 3.0 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3.0 5.2 2.3]
[6.3 2.5 5.0 1.9]
[6.5 3.0 5.2 2.0]
[6.2 3.4 5.4 2.3]
[5.9 3.0 5.1 1.8]]
y = 
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica']
['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']
Last Version, y = 
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2]
[[4.3        2.        ]
[4.30721443 2.        ]
[4.31442886 2.        ]
...
[7.88557114 4.4       ]
[7.89278557 4.4       ]
[7.9        4.4       ]]

进程已结束,退出代码0

http://www.lryc.cn/news/620748.html

相关文章:

  • AUTOSAR汽车电子嵌入式编程精讲300篇-【自动驾驶】硬件在环(HIL)(二)
  • 第四天~在CANFD或CAN2.0的ARXML文件中实现Multiplexor多路复用信号实战
  • 依托AR远程协助,沟通协作,高效流畅
  • 读From GPT-2 to gpt-oss: Analyzing the Architectural Advances
  • 第四天-创建一个Classic CAN(经典CAN2.0)/CANFD的系统描述ARXML文件
  • IDEA、Pycharm、DataGrip等激活破解冲突问题解决方案之一
  • 学习设计模式《二十二》——职责链模式
  • 深入了解linux系统—— 线程概念
  • 深入解析 Spring IOC 容器在 Web 环境中的启动机制
  • 嵌入式学习Day27
  • stm32项目(29)——基于stm32的智能眼镜设计
  • 【代码随想录day 20】 力扣 108.将有序数组转换为二叉搜索树
  • SwiftUI 页面弹窗操作
  • Linux网络编程:应用层自定义协议与序列化
  • Flutter sqflite插件
  • 支付域——账户系统设计
  • 支持pcm语音文件缓存顺序播放
  • 解剖HashMap的put <四> jdk1.8
  • OpenCv(二)——边界填充、阈值处理
  • Nacos 配置热更新:Spring Boot Bean 自动获取最新配置
  • flutter3.7.12版本设置TextField的contextMenuBuilder的文字颜色
  • MixOne在macOS上安装碰到的问题
  • 解决SQL Server连接失败:Connection refused: connect
  • 苹果正计划大举进军人工智能硬件领域
  • 从0开始跟小甲鱼C语言视频使用linux一步步学习C语言(持续更新)8.14
  • 2025 电赛 C 题 发挥3 带数字编号的正方形识别 边长测量
  • [特殊字符]走进华为,解锁商业传奇密码
  • 通过网页调用身份证阅读器http websocket方法-湖南步联科技美萍MP999A电子————仙盟创梦IDE
  • 从根源到生态:Apache Doris 与 StarRocks 的深度对比 —— 论开源基因与长期价值的优越性
  • 审批流程系统设计与实现:状态驱动、灵活扩展的企业级解决方案