当前位置: 首页 > news >正文

actuary notes[1]

文章目录

  • random event
  • references

random event

  1. the theory of probability replies on random experiments which result can not be certainly confirmed.although we are unable to get the necessary consequence of one experiment,all reusults perhaps appear in those experiment can be found.so every testing result will be collected to construct sample space which is infinite or inifite.
  2. for example,there are six spitballs written six different integer between 1 and 6 in one box.if you take one out of those spitballs,it must be written one of six numbers,one possible number will appears in your spitball with averaged possiblity.
    let A is sample space,A=1,2,3,4,5,6A={1,2,3,4,5,6}A=1,2,3,4,5,6,so every number be selected with the probability of 16\frac 1 661.
    the situation was changed ,one box became three boxes,every box aslo includes six spitball written one of six numbers from 1 to 6,you still take one of every box,now the sample space A={{1,1,1},{1,1,2},......}A=\{\{1,1,1\},\{1,1,2\},......\}A={{1,1,1},{1,1,2},......} include 6×6×6=2166 \times 6 \times 6=2166×6×6=216
  3. let the subset A′⊂AA' \subset AAA,AAA can be called as event(random event) such as A1′,A2′,...A'_1,A'_2,...A1,A2,...,if A′A'A just only involves one sample,then we call A′A'A as basic event,in the above example, A′={{1,2,3}}A'=\{\{1,2,3\}\}A={{1,2,3}} can be called as basic event.
  4. let us suppose the event(random event) A′={{1,2,3},{2,2,3},{3,2,3}}A'=\{\{1,2,3\},\{2,2,3\},\{3,2,3\}\}A={{1,2,3},{2,2,3},{3,2,3}} , if you fetch out three spitballs written 1,3 and 2 respectively,then the event A′A'A has took place, A′A'A have never been appeared,furthermore three spitballs written the numbers 3,1 and 1 are took out of three boxes respectively,so A′A'A never happen because of the fact {1,2,3}∉A′\{1,2,3\} \notin A'{1,2,3}/A.
  5. let A′′={{1,2,3},{2,2,3}}A''=\{\{1,2,3\},\{2,2,3\}\}A′′={{1,2,3},{2,2,3}},so A′′⊂A′A'' \subset A'A′′A.
  6. let A′′={{1,2,3},{2,2,3},{3,2,3}}A''=\{\{1,2,3\},\{2,2,3\},\{3,2,3\}\}A′′={{1,2,3},{2,2,3},{3,2,3}} and A′={{1,2,3},{2,2,3},{3,2,3}}A'=\{\{1,2,3\},\{2,2,3\},\{3,2,3\}\}A={{1,2,3},{2,2,3},{3,2,3}},so A′′⊂A′,A′⊂A′′,A′=A′′A'' \subset A',A' \subset A'',A' = A''A′′A,AA′′,A=A′′
  7. when one sample in the event A′′′A'''A′′′will definitely occur,A′′′A'''A′′′ can be called as certain event. if every sample in A′′′A'''A′′′ is impossible to occur,then A′′′A'''A′′′ can be called as impossible event.

references

  1. 《数学》
http://www.lryc.cn/news/615450.html

相关文章:

  • urmom damn the jvm
  • C++2024 年一级
  • 基于 InfluxDB 的服务器性能监控系统实战(一)
  • P1053 [NOIP 2005 提高组] 篝火晚会
  • Linux学习--软件编程(shell命令)
  • 多线程(四) --- 线程安全问题
  • 使用 Ansys Discovery 进行动态设计和分析
  • js零基础入门
  • HashTable, HashMap, ConcurrentHashMap
  • Java 8 特性
  • 力扣(删除有序数组中的重复项I/II)
  • 20250808组题总结
  • 力扣 hot100 Day70
  • 力扣-35.搜索插入位置
  • SwiftUI 登录页面键盘约束冲突与卡顿优化全攻略
  • AI推理的“灵魂五问”:直面2025算力鸿沟与中国的破局之路
  • Java基础语法全面解析:从入门到掌握
  • MySQL 复制表详细说明
  • 三极管在电路中的应用
  • SpringSecurity过滤器链全解析
  • 工具箱许愿墙项目发布
  • Redis 事务机制
  • Mysql笔记-系统变量\用户变量管理
  • 机器学习 K-Means聚类 无监督学习
  • 数据结构初阶(7)树 二叉树
  • BGP笔记
  • 机器学习DBSCAN密度聚类
  • 讯飞晓医-讯飞医疗推出的个人AI健康助手
  • 复杂环境下车牌识别准确率↑29%:陌讯动态特征融合算法实战解析
  • 编译技术的两条演化支线:从前端 UI 框架到底层编译器的智能测试