递归推理树(RR-Tree)系统:构建认知推理的骨架结构
探索基于三维评估的动态推理系统如何实现智能决策与知识演化
引言
在复杂问题求解领域(如战略决策或科学探索),人类思维的递归本质为AI系统设计提供了重要启发。我设计并实现的递归推理树(Recursive Reasoning Tree, RR-Tree)系统模仿人类思维的层层推进特性,通过结构化认知过程来解决复杂问题。
本文将深入探讨RR-Tree的核心机制,包括其数据结构、TQR三维评估模型和操作符引擎,并通过黑暗森林策略制定和数学反例发现两个案例展示其实际应用。
核心数据结构:知识树的结构化表达
RRNode:推理树的基本单位
每个推理节点代表一个知识单元,包含以下核心属性:
class RRNode:def __init__(self, name, content, parent=None):self.id = uuid.uuid4().hex # 唯一标识符self.name = nameself.content = content # 知识内容self.version = 1 # 版本迭代self.status = "hypothesized" # 节点状态self.tqr_score = None # 三维质量评分self.children = [] # 子节点self.parent = parent # 父节点
节点生命周期经历五个阶段:
- hypothesized - 初步假设阶段
- evaluating - 质量评估阶段
- resolved - 已解决问题
- deprecated - 被淘汰方案
- merged - 与其它方案合并
RRTree:推理树的整体架构
class RRTree:def __init__(self, root_goal):self.root = RRNode("root", root_goal)self.root.status = "active"self.evaluator = TQREvaluator() # 质量评估器self.operator = OperatorEngine(self) # 操作引擎self.audit_log = [] # 推理过程记录self.converged = False # 收敛状态
推理树支持从根节点开始的渐进式推理,通过reasoning_cycle()
方法驱动推理循环。
TQR三维评估模型
推理质量通过三个维度进行评估:
class TQREvaluator:def evaluate(self, node, context):alpha = self._calculate_alignment(node, context) # 逻辑连贯性beta = self._calculate_novelty(node, context) # 观点新颖性gamma = self._calculate_complexity(node) # 认知复杂度# 核心评估公式numerator = alpha * (1 + beta**2)denominator = (1 + gamma)**0.5score = numerator / denominatornode.tqr_score = score
三维度详细说明
- 逻辑连贯性(α):考察节点与上下文的匹配程度
- 计算基础分(6.0)+上下文匹配奖励分(最高4.0)
- 观点新颖性(β):评估独特见解的价值
- 基础分(5.0)+独特词汇奖励(每个0.1分)
- 认知复杂度(γ):衡量知识深度
- 基于内容长度(词数/20)和节点深度(深度*0.1)
操作符引擎:知识树的演变机制
核心操作符定义了知识树的动态演化路径:
操作符 | 功能描述 | 状态转换路径 |
---|---|---|
EXPAND | 扩展新分支 | → hypothesized |
CHOOSE | 选择最佳子节点 | evaluating → resolved |
REWRITE | 重构节点内容 | resolved → resolved (v++) |
MERGE | 合并相关节点 | resolved → merged |
DEEP_DIVE | 递归深入解决复杂问题 | evaluating → resolved |
DEEP_DIVE操作示例:
def _deep_dive(self, node):# 创建子推理树subtree = RRTree(f"深度探索: {node.content}")# 执行递归推理for i in range(2):subtree.reasoning_cycle()if subtree.converged: break# 替换原节点new_node = RRNode(f"resolved_{node.name}", subtree.get_conclusion(),parent=node.parent)new_node.status = "resolved"return new_node
推理循环:认知决策的核心
推理树通过周期性循环实现知识的渐进式演化:
def reasoning_cycle(self):current = self._select_node_to_expand() # 选择最佳节点if current.status in ["hypothesized", "evaluating"]:context = self._get_context(current) # 获取上下文self.evaluator.evaluate(current, context) # 三维评估# 基于状态选择操作if self._needs_expansion(current):self.operator.apply("EXPAND", current)elif self._needs_rewrite(current):self.operator.apply("REWRITE", current)elif self._is_complex_node(current):self.operator.apply("DEEP_DIVE", current)self.converged = self._check_convergence() # 检查收敛
节点选择算法:
- 收集所有"活动中"的边界节点
- 按TQR分数降序排序
- 选择最优节点进行扩展
应用案例
黑暗森林策略推导
构建宇宙文明生存策略的推理过程:
dark_forest_tree = RRTree("制定宇宙文明生存策略")# 添加公理基础
axioms = [("axiom_1", "生存是文明第一需要"),("axiom_2", "宇宙物质总量不变"),("axiom_3", "存在其他智慧文明"),("axiom_4", "暴露位置招致毁灭风险")
]
推理路径:
(root 制定宇宙文明生存策略)├─ (axiom_1 生存是文明第一需要)├─ (axiom_2 宇宙物质总量不变)├─ (axiom_3 存在其他智慧文明)└─ (axiom_4 暴露位置招致毁灭风险)
经过三次推理循环后,系统推导出核心策略:“保持隐匿和技术优势以规避风险”。
数学反例发现
寻找a⁵ + b⁵ + c⁵ + d⁵ = e⁵的反例过程:
math_tree = RRTree("寻找a⁵+b⁵+c⁵+d⁵=e⁵的反例")
strategy_node = RRNode("strategy", "边界值搜索(max=150)")
math_tree.root.add_child(strategy_node)
关键演变:
- 初始:边界值搜索策略(max=150)
- 扩展出多个搜索子策略
- 选择并优化TQR最高的分支
- DEEP_DIVE操作生成新解决方案
- 结论:27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵
结论与展望
RR-Tree系统通过结构化的递归推理实现知识的渐进式演化,其特点包括:
- 动态决策机制:基于TQR评分动态选择扩展路径
- 可解释推理:完整的S表达式记录推理过程
- 自适应知识演化:通过版本控制实现观点迭代
- 复杂问题化解:深层递归分解复杂问题
未来方向:
- 集成大语言模型提升推理能力
- 引入多树协同推理机制
- 开发可视化推理路径工具
- 构建推理知识共享网络
RR-Tree为复杂决策过程提供了结构化框架,将人类思维的递归本质转化为可执行的算法框架,在战略规划、科研探索和复杂决策领域具有广阔应用前景。
import uuid
import random
from collections import deque# ================== 核心数据结构 ==================
class RRNode:"""RR-Tree 节点实现"""def __init__(self, name, content, parent=None):self.id = uuid.uuid4().hexself.name = nameself.content = contentself.version = 1self.status = "hypothesized" # hypothesized | evaluating | resolved | deprecated | active | mergedself.tqr_score = Noneself.children = []self.parent = parentdef add_child(self, node):"""添加子节点"""node.parent = selfself.children.append(node)return selfdef update_content(self, new_content):"""更新节点内容并增加版本号"""self.content = new_contentself.version += 1return selfdef to_s_expr(self):"""转换为S-表达式"""children_expr = " ".join([child.to_s_expr() for child in self.children])return (f"({self.name} "f"(meta (id '{self.id}') (version {self.version}) "f"(status '{self.status}') (tqr_score {self.tqr_score or 'None'})) "f"{children_expr})")def find_node(self, node_id):"""递归查找节点"""if self.id == node_id:return selffor child in self.children:found = child.find_node(node_id)if found:return foundreturn Noneclass RRTree:"""完整的RR-Tree实现"""def __init__(self, root_goal):self.root = RRNode("root", root_goal)self.root.status = "active"self.evaluator = TQREvaluator()self.operator = OperatorEngine(self)self.audit_log = []self.converged = Falsedef reasoning_cycle(self):"""核心推理循环"""if self.converged:return self.rootcurrent = self._select_node_to_expand()if not current:print("没有可扩展的节点,推理结束")self.converged = Truereturn self.rootprint(f"当前处理节点: {current.name} ({current.status}) - {current.content}")# 评估节点质量if current.status in ["hypothesized", "evaluating"]:context = self._get_context(current)print(f"评估节点: {current.name}, 上下文: {context}")self.evaluator.evaluate(current, context)print(f"评估完成 - TQR分数: {current.tqr_score:.2f}")# 应用操作符if current.children and all(c.status != "hypothesized" for c in current.children):print(f"节点 {current.name} 有子节点,执行CHOOSE操作")chosen = self.operator.apply("CHOOSE", current)print(f"选择了节点: {chosen.name} - {chosen.content}")else:if self._needs_expansion(current):print(f"节点 {current.name} 需要扩展,执行EXPAND操作")new_nodes = self.operator.apply("EXPAND", current)print(f"新增了 {len(new_nodes)} 个子节点")elif self._needs_rewrite(current):print(f"节点 {current.name} 需要重写,执行REWRITE操作")self.operator.apply("REWRITE", current)print(f"重写完成: {current.content}")elif self._is_complex_node(current):print(f"节点 {current.name} 复杂,执行DEEP_DIVE操作")self.operator.apply("DEEP_DIVE", current)print(f"深度探索完成: {current.content}")# 检查收敛条件self.converged = self._check_convergence()return self.rootdef _select_node_to_expand(self):"""基于TQR选择最佳扩展节点"""frontier = self._get_frontier_nodes()if not frontier:# 如果没有可扩展节点,尝试激活根节点if self.root.status == "active":print("激活根节点进行扩展")self.root.status = "evaluating"return self.root# 或者选择第一个子节点for child in self.root.children:if child.status in ["active", "hypothesized"]:print(f"选择子节点 {child.name} 进行扩展")return childreturn None# 按TQR分数排序并返回最佳节点frontier.sort(key=lambda x: x.tqr_score or 0, reverse=True)best_node = frontier[0]print(f"从候选节点中选择: {best_node.name} (分数: {best_node.tqr_score or '无'})")return best_nodedef _get_frontier_nodes(self):"""获取所有处于活跃状态的节点"""frontier = []queue = deque([self.root])while queue:node = queue.popleft()if node.status in ["hypothesized", "evaluating"]:frontier.append(node)queue.extend(node.children)return frontierdef _get_context(self, node):"""获取节点上下文信息"""context = []current = nodewhile current:context.append(f"{current.name}: {current.content}")current = current.parentreturn " <- ".join(reversed(context))def _needs_expansion(self, node):"""判断是否需要扩展"""return len(node.children) < 3 and (node.tqr_score or 0) > 0def _needs_rewrite(self, node):"""判断是否需要重写"""if node.status != "resolved":return Falsereturn (node.tqr_score or 0) < 7.0 and node.version < 3def _is_complex_node(self, node):"""判断是否需要深度递归"""return ((node.tqr_score or 0) > 7.0and self.evaluator._calculate_complexity(node) > 5.0)def _check_convergence(self):"""检查树是否收敛(所有节点已解决或弃用)"""queue = deque([self.root])while queue:node = queue.popleft()if node.status not in ["resolved", "deprecated", "active", "merged"]:return Falsequeue.extend(node.children)return Truedef find_node(self, node_id):"""在树中查找节点"""return self.root.find_node(node_id)def to_s_expr(self):"""将整棵树转换为S-表达式"""return self.root.to_s_expr()def get_conclusion(self):"""获取最终结论(根节点的第一个已解决子节点)"""if self.converged:for child in self.root.children:if child.status == "resolved":return child.contentreturn "未达成结论"# ================== TQR评估模型 ==================
class TQREvaluator:"""TQR评估引擎"""def __init__(self, alpha_weight=1.0, beta_weight=1.5, gamma_weight=0.7):self.weights = {'alpha': alpha_weight, 'beta': beta_weight, 'gamma': gamma_weight}def evaluate(self, node, context):"""三维度评估节点质量"""alpha = self._calculate_alignment(node, context)beta = self._calculate_novelty(node, context)gamma = self._calculate_complexity(node)# 核心公式: TQR = (α * (1 + β²)) / (1 + γ)^0.5numerator = self.weights['alpha'] * alpha * (1 + (self.weights['beta'] * beta) ** 2)denominator = (1 + self.weights['gamma'] * gamma) ** 0.5score = numerator / denominator if denominator != 0 else numeratornode.tqr_score = scorereturn scoredef _calculate_alignment(self, node, context):"""逻辑连贯性评估"""# 简化实现:基于上下文匹配度context_words = set(word for word in context.split() if len(word) > 3)node_words = set(word for word in node.content.split() if len(word) > 3)intersection = context_words & node_words# 基本分数 + 匹配度加分base_score = 6.0 # 中等分数match_bonus = min(len(intersection) * 0.5, 4.0) # 最高加4分return base_score + match_bonusdef _calculate_novelty(self, node, context):"""新颖性评估"""# 简化实现:基于独特词汇unique_words = set(node.content.split()) - set(context.split())uniqueness = len(unique_words) / 10 # 每个独特词汇加0.1分# 基本分数 + 独特性加分base_score = 5.0return min(base_score + uniqueness, 10.0)def _calculate_complexity(self, node):"""认知复杂度评估"""# 基于内容长度和嵌套深度word_count = len(node.content.split())depth = self._get_node_depth(node)complexity = word_count / 20 + depth * 0.1return min(complexity, 10.0)def _get_node_depth(self, node):"""计算节点在树中的深度"""depth = 0current = nodewhile current.parent:depth += 1current = current.parentreturn depth# ================== 操作符引擎 ==================
class OperatorEngine:"""操作符执行引擎"""def __init__(self, tree):self.tree = treeself.state_transitions = {"EXPAND": {"from": ["active", "resolved", "evaluating"], "to": "hypothesized"},"CHOOSE": {"from": "evaluating", "to": "resolved"},"REWRITE": {"from": ["resolved", "active"], "to": "resolved"},"MERGE": {"from": "resolved", "to": "merged"},"DEEP_DIVE": {"from": ["evaluating", "active"], "to": "resolved"}}def apply(self, operator, target, params=None):"""应用操作符"""if isinstance(target, str):node = self.tree.find_node(target)else:node = targetif not node:print(f"目标节点未找到: {target}")return None# 检查状态转换是否有效valid_states = self.state_transitions.get(operator, {}).get("from", [])if node.status not in valid_states:print(f"无效状态转换: 无法在状态 {node.status} 下应用 {operator}")return nodeif operator == "EXPAND":return self._expand(node)elif operator == "CHOOSE":return self._choose(node)elif operator == "REWRITE":return self._rewrite(node)elif operator == "MERGE":return self._merge(node, params.get('sibling_nodes', []) if params else [])elif operator == "DEEP_DIVE":return self._deep_dive(node)else:print(f"未知操作符: {operator}")return nodedef _expand(self, node):"""EXPAND操作实现"""# 生成子节点内容expansions = [f"关于'{node.content}'的深入分析",f"对'{node.content}'的补充观点",f"'{node.content}'的实际应用"]new_nodes = []for i, content in enumerate(expansions):child = RRNode(f"{node.name}_child_{i + 1}", content, parent=node)child.status = "hypothesized"node.add_child(child)new_nodes.append(child)node.status = "evaluating"return new_nodesdef _choose(self, parent_node):"""CHOOSE操作实现"""if not parent_node.children:print(f"节点 {parent_node.name} 没有子节点可供选择")return None# 选择TQR分数最高的子节点best_child = max(parent_node.children, key=lambda x: x.tqr_score or 0)# 更新所有子节点状态for child in parent_node.children:child.status = "deprecated" if child != best_child else "resolved"parent_node.status = "resolved"return best_childdef _rewrite(self, node):"""REWRITE操作实现"""# 改进节点内容improved_content = f"[v{node.version + 1}] 改进版: {node.content}"node.update_content(improved_content)return nodedef _merge(self, target_node, sibling_nodes):"""MERGE操作实现"""# 收集所有需要合并的节点all_nodes = [target_node] + sibling_nodes# 创建新父节点parent_content = f"合并观点: {', '.join(n.content for n in all_nodes)}"new_parent = RRNode(f"merged_{target_node.name}", parent_content, parent=target_node.parent)# 重新设置父关系for node in all_nodes:node.parent = new_parentnode.status = "merged"new_parent.children.append(node)# 在树结构中替换节点if target_node.parent:target_node.parent.children.remove(target_node)target_node.parent.add_child(new_parent)return new_parentdef _deep_dive(self, node):"""DEEP_DIVE递归操作"""# 创建子推理树subtree = RRTree(f"深度探索: {node.content}")# 添加初始节点start_node = RRNode("deep_start", "开始探索", parent=subtree.root)subtree.root.add_child(start_node)# 执行子推理过程for i in range(2): # 简化:执行2个推理周期subtree.reasoning_cycle()if subtree.converged:break# 创建新节点替换原节点new_content = subtree.get_conclusion()new_node = RRNode(f"resolved_{node.name}",new_content,parent=node.parent)new_node.status = "resolved"# 在树结构中替换节点if node.parent:node.parent.children.remove(node)node.parent.add_child(new_node)return new_node# ================== 使用示例 ==================
if __name__ == "__main__":print("===== 黑暗森林策略推理 =====")# 创建推理树 - 黑暗森林策略dark_forest_tree = RRTree("制定宇宙文明生存策略")# 添加公理节点axioms = [("axiom_1", "生存是文明第一需要"),("axiom_2", "宇宙物质总量不变"),("axiom_3", "存在其他智慧文明"),("axiom_4", "暴露位置招致毁灭风险")]for name, content in axioms:node = RRNode(name, content)node.status = "active"dark_forest_tree.root.add_child(node)print("\n===== 初始状态 =====")print(dark_forest_tree.to_s_expr())# 执行推理循环for i in range(3):print(f"\n===== 推理周期 {i + 1} =====")dark_forest_tree.reasoning_cycle()print(dark_forest_tree.to_s_expr())# 最终结论print("\n===== 最终结论 =====")print(dark_forest_tree.get_conclusion())print("\n\n===== 数学反例发现 =====")# 数学反例发现math_tree = RRTree("寻找a⁵+b⁵+c⁵+d⁵=e⁵的反例")math_tree.evaluator.weights = {'alpha': 1.2, 'beta': 2.0, 'gamma': 0.5}strategy_node = RRNode("strategy", "边界值搜索(max=150)")strategy_node.status = "active"math_tree.root.add_child(strategy_node)for i in range(3):print(f"\n===== 推理周期 {i + 1} =====")math_tree.reasoning_cycle()print(math_tree.to_s_expr())print("\n===== 数学反例 =====")print(math_tree.get_conclusion())