wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
env setting
vim ~/.bashrc
export CUDA_HOME=/usr/local/cuda-11.8
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
export PATH=${CUDA_HOME}/bin:${PATH}
# pip 安装
pip install ultralytics# 注意:
# 如果在CUDA 环境中安装,最佳做法是安装 ultralytics, pytorch和 pytorch-cuda 在同一命令中。这允许 conda 软件包管理器解决任何冲突。或者,安装 pytorch-cuda 最后覆盖CPU pytorch 如有必要,请将该程序包添加到"... "中。
# Install all packages together using conda
#conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics# or
# Install the ultralytics package using conda
#conda install -c conda-forge ultralytics
eval
from ultralytics import YOLO# Load a model
model = YOLO("yolo11n.pt") # pretrained YOLO11n model# Run batched inference on a list of images
results = model(["image1.jpg", "image2.jpg"]) # return a list of Results objects# Process results list
for result in results:boxes = result.boxes # Boxes object for bounding box outputsmasks = result.masks # Masks object for segmentation masks outputskeypoints = result.keypoints # Keypoints object for pose outputsprobs = result.probs # Probs object for classification outputsobb = result.obb # Oriented boxes object for OBB outputsresult.show() # display to screenresult.save(filename="result.jpg") # save to disk