当前位置: 首页 > news >正文

三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测

代码功能

该代码实现了一个光伏发电量预测系统,采用三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM)对北半球光伏数据进行时间序列预测,并通过多维度评估指标和可视化对比模型性能。

算法步骤

1. 数据预处理
  • 数据导入:从Excel读取北半球光伏数据
  • 序列重构
    构建时间窗口:用前4步预测下一步
  • 数据集划分:70%训练集,30%测试集
  • 归一化:采用mapminmax归一化到[0,1]区间
  • 数据平铺:转换为LSTM需要的序列格式
2. 模型构建

① LSTM模型

layers = [sequenceInputLayer(f_)lstmLayer(20)       % 20个LSTM单元reluLayerfullyConnectedLayer(1)regressionLayer];

② CNN-LSTM模型

lgraph = layerGraph();
tempLayers = [sequenceInputLayer([f_,1,1])sequenceFoldingLayer];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [convolution2dLayer([3,1],16)  % 卷积核3x1, 16通道reluLayerconvolution2dLayer([3,1],32)  % 卷积核3x1, 32通道reluLayer];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [sequenceUnfoldingLayerflattenLayerlstmLayer(5)                  % 5个LSTM单元fullyConnectedLayer(1)regressionLayer];

③ BO-CNN-LSTM模型

  • 贝叶斯优化超参数
    • LSTM单元数
    • 初始学习率
    • L2正则化系数
3. 模型训练
  • 通用设置
    • 优化器:Adam
    • 最大迭代次数:500
    • 学习率策略:每400次衰减为0.1倍
    • 正则化:L2权重衰减
  • 训练过程监控:记录训练损失和RMSE
4. 预测与反归一化
t_sim = predict(net, Lp_test); 
T_sim = mapminmax('reverse', t_sim, ps_output);  % 反归一化
5. 评估与可视化
  • 评估指标:RMSE、MAE、MAPE、R²、MSE
  • 可视化对比
    • 预测值 vs 真实值曲线
    • 误差分布柱状图
    • 雷达图/罗盘图多指标对比
    • 二维散点图(R² vs MAPE)
    • 柱状图指标对比

关键参数设定

参数说明
num_size0.7训练集比例
MaxEpochs500最大训练轮次
LSTM Units20基础LSTM单元数
CNN Filters[16,32]卷积层通道数
Drop Factor0.1学习率衰减因子
Drop Period400衰减周期

运行环境要求

MATLAB版本:R2021a或更高

应用场景

  1. 光伏发电预测
    • 电网调度与能源管理
    • 电站运维决策支持
  2. 时间序列预测
    • 电力负荷预测
    • 气象数据预测
    • 金融时间序列分析
  3. 模型对比研究
    • LSTM vs CNN-LSTM架构性能对比
    • 贝叶斯优化效果验证

创新点总结

  1. 三级模型架构
    LSTM → CNN-LSTM → BO-CNN-LSTM渐进式优化
  2. 多维度评估体系
    • 5种量化指标(RMSE/R²/MAE/MAPE/MSE)
    • 6种可视化对比(曲线/雷达/罗盘/柱状/散点/误差图)
  3. 贝叶斯自动调参
    优化神经网络超参数组合

:实际运行时需确保:

  1. 北半球光伏数据.xlsx文件在路径中
  2. 自定义函数(fical.m, radarChart.m)已实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

完整代码私信博主回复三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测

http://www.lryc.cn/news/588861.html

相关文章:

  • Datawhale AI 夏令营第一期(机器学习方向)Task2 笔记:用户新增预测挑战赛 —— 从业务理解到技术实现
  • 《C++模板高阶机制解析:非类型参数、特化设计与分离编译实践》
  • react的Fiber架构和双向链表区别
  • Redis 数据持久化
  • Cookie全解析:Web开发核心机制
  • Unity Editor下拉框,支持搜索,多层级
  • Expression 类的静态方法
  • 用TensorFlow进行逻辑回归(五)
  • 简单明了的对比PyTorch与TensorFlow
  • VSCode同时支持Vue2和Vue3开发的插件指南
  • Spark 之 Join BoundCondition
  • 云手机隐私保护指南:如何保障账号与数据的云端安全?
  • Java单元测试JUnit
  • 静态补丁脚本 - 修改 libtolua.so
  • MySQL数据库----约束
  • 开源工具与框架:基于.NET Core 的 Modbus 网关开发(一)
  • 硬件与软件的桥梁:冯诺依曼体系、操作系统和初始进程的深度解析
  • 【目标追踪】MUTR3D: A Multi-camera Tracking Framework via 3D-to-2D Queries
  • S7-200 SMART PLC:不同CPU及数字量 IO 接线全解析
  • AUTOSAR进阶图解==>AUTOSAR_SWS_FlexRayISOTransportLayer
  • 读书笔记5:交易在供应链中的关键作用
  • AI产品经理面试宝典第20天:AI+金融场景相关面试题及回答指导
  • C#,List<T> 与 Vector<T>
  • 【记录】Ubuntu20.04安装mysql
  • k8s之Snapshots 详解
  • Apifox 和 Apipost如何选?2025企业API开发工具选型需求分析及建议
  • 前端打包自动压缩为zip--archiver
  • SpringBoot 2.x→3.0升级实战:Jakarta EE兼容性改造清单
  • Flink双流实时对账
  • GaussDB 数据库架构师修炼(三) 集群管理概览