当前位置: 首页 > news >正文

经典动态规划问题:含手续费的股票买卖【从 O(n) 到 O(1) 的优化解析】

题目理解

我们要在给定的股票价格数组 prices 中进行买卖操作,并尽可能多次交易以获取最大利润。每次交易都需要支付一定的手续费 fee,因此我们必须考虑如何通过合适的交易策略最大化利润。

在本题中,每一天可以选择:

  1. 不进行任何操作。
  2. 买入股票。
  3. 卖出股票(前提是已经持有股票)。

题目链接:714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)

动态规划思路

我们可以使用动态规划(DP)来解决这个问题。在动态规划中,我们定义两种状态:

  1. 持有股票状态(持仓)hold[i] 表示第 i 天结束时持有股票时的最大利润。
  2. 不持有股票状态(空仓)cash[i] 表示第 i 天结束时不持有股票时的最大利润。
状态转移方程
  • 持有股票的状态
    我们有两种可能:

    1. 我们在第 i 天之前已经持有股票,那么 hold[i] 就和 hold[i-1] 相同。
    2. 我们在第 i 天买入股票,那么需要从 cash[i-1](前一天不持有股票的最大利润)中减去 prices[i](当天股票价格)。

      因此,持有股票状态的转移方程为:
      h o l d [ i ] = max ⁡ ( h o l d [ i − 1 ] , c a s h [ i − 1 ] − p r i c e s [ i ] ) hold[i] = \max(hold[i-1], cash[i-1] - prices[i]) hold[i]=max(hold[i1],cash[i1]prices[i])
  • 不持有股票的状态
    我们有两种可能:

    1. 我们在第 i 天之前已经卖出了股票,那么 cash[i] 就和 cash[i-1] 相同。
    2. 我们在第 i 天卖出股票,此时需要加上 prices[i] 的收入并扣除手续费 fee

      因此,不持有股票状态的转移方程为:
      c a s h [ i ] = max ⁡ ( c a s h [ i − 1 ] , h o l d [ i − 1 ] + p r i c e s [ i ] − f e e ) cash[i] = \max(cash[i-1], hold[i-1] + prices[i] - fee) cash[i]=max(cash[i1],hold[i1]+prices[i]fee)
初始状态
  • hold[0] = -prices[0]:第0天如果买入股票,我们的利润就是负的第0天的股票价格。
  • cash[0] = 0:第0天如果不买股票,利润为0。
最终结果

我们最终需要的是在最后一天结束时,不持有股票时的最大利润,即 cash[n-1],其中 nprices 的长度。

C++ 实现

#include <vector>
#include <algorithm>
using namespace std;int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<int> hold(n), cash(n);hold[0] = -prices[0]; // 第 0 天持有股票cash[0] = 0;          // 第 0 天不持有股票for (int i = 1; i < n; ++i) {cash[i] = max(cash[i-1], hold[i-1] + prices[i] - fee); // 不持有股票hold[i] = max(hold[i-1], cash[i-1] - prices[i]);       // 持有股票}return cash[n-1];  // 最后一天不持有股票的最大利润
}

优化思路

这个基本解法需要两个数组 holdcash,分别存储持有和不持有股票时的利润值。这会占用 O(n) 的空间。而实际上,在计算第 i 天的状态时,只依赖于 i-1 天的状态,因此我们可以使用两个变量代替数组,优化空间复杂度到 O(1)

优化后的实现

#include <vector>
#include <algorithm>
using namespace std;int maxProfit(vector<int>& prices, int fee) {int n = prices.size();int hold = -prices[0]; // 持有股票时的最大利润int cash = 0;          // 不持有股票时的最大利润for (int i = 1; i < n; ++i) {cash = max(cash, hold + prices[i] - fee); // 更新不持有股票的最大利润hold = max(hold, cash - prices[i]);       // 更新持有股票的最大利润}return cash;  // 最后一天不持有股票的最大利润
}

解释及示例

示例 1

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8

过程:

  1. 第 0 天:买入股票,hold = -1cash = 0
  2. 第 1 天:卖出股票,cash = max(0, -1 + 3 - 2) = 0,保持持有状态,hold = -1
  3. 第 2 天:保持持有状态,cash = 0hold = max(-1, 0 - 2) = -1
  4. 第 3 天:卖出股票,cash = max(0, -1 + 8 - 2) = 5hold = max(-1, 5 - 8) = -1
  5. 第 4 天:买入股票,cash = 5hold = max(-1, 5 - 4) = 1
  6. 第 5 天:卖出股票,cash = max(5, 1 + 9 - 2) = 8hold = 1

最终结果:cash = 8

示例 2

输入:prices = [1, 3, 7, 5, 10, 3], fee = 3
输出:6

  1. 第 0 天:买入股票,持有股票的利润为 hold = -1,不持有股票的利润为 cash = 0
  2. 第 1 天:卖出股票后利润为 cash = max(0, -1 + 3 - 3) = 0,持有状态 hold = max(-1, 0 - 3) = -1
  3. 第 2 天:卖出股票后利润为 cash = max(0, -1 + 7 - 3) = 3,持有状态 hold = max(-1, 3 - 7) = -1
  4. 第 3 天:保持不持有状态 cash = max(3, -1 + 5 - 3) = 3,持有状态 hold = max(-1, 3 - 5) = -1
  5. 第 4 天:卖出股票后利润为 cash = max(3, -1 + 10 - 3) = 6,持有状态 hold = max(-1, 6 - 10) = -1
  6. 第 5 天:保持不持有状态 cash = max(6, -1 + 3 - 3) = 6

最终利润为 6。

关键点总结

  1. 最优子结构:第 i 天的状态只取决于第 i-1 天的状态。

  2. 状态转移方程

    • 持有状态:hold[i] = max(hold[i-1], cash[i-1] - prices[i])
    • 不持有状态:cash[i] = max(cash[i-1], hold[i-1] + prices[i] - fee)
  3. 空间优化:我们只需要两个变量 holdcash,可以将空间复杂度从 O(n) 优化到 O(1)

http://www.lryc.cn/news/466928.html

相关文章:

  • Python画笔案例-088 绘制 滚动的汉字
  • Redis 5.0 安装配置(Windows)
  • 金融行业:办公安全防护专属攻略
  • python如何基于numpy pandas完成复杂的数据分析操作?
  • Linux中定时任务调度工具——crontab
  • 思维+差分,CF 1884C - Medium Design
  • 简单介绍冯诺依曼体系
  • kernel32.dll下载地址:如何安全地恢复系统文件
  • 【高等数学】多元微分学 (一)
  • Python爬取京东商品信息,详细讲解,手把手教学(附源码)
  • 大家有没有了解过TLKS-PLGS这款接地电阻在线监测装置?它在电力系统中能发挥什么作用呢?
  • Shell中的函数
  • 通过IP地址或者主机名添加打印机20241023
  • 基于SpringBoot+Vue智慧养老关爱系统【提供源码+答辩PPT+参考文档+项目部署】
  • 新手教学系列——利用短效代理快速搭建代理池
  • 实体与DTO如何转换
  • Docker 安装Postgres和PostGIS,并制作镜像
  • ES6:let和const命令解读以及变量的解构赋值
  • java-collection集合整理0.9.4
  • ParallelsDesktop20最新版本虚拟机 一键切换系统 游戏娱乐两不误
  • 现代C语言:C23标准重大更新
  • Maven进阶——坐标、依赖、仓库
  • Android中的内存泄漏及其检测方式
  • 【雷电模拟器命令合集操作大全】官方文档整理贴
  • redis的配置文件解析
  • Python中的元组和列表
  • 【AI战略思考7】粮草筹集完毕和我的朋友分类
  • 科大讯飞AI开发者大赛颁奖典礼,万码优才荣获前三甲!
  • Redis 哨兵机制
  • linux-磁盘io情况、性能排查