当前位置: 首页 > news >正文

【高等数学】多元微分学 (一)

偏导数

偏导数定义

  • 如果二元函数 f f f x 0 , y 0 x_0,y_0 x0,y0 的某邻域有定义, 且下述极限存在
    lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)
    其极限称作 f f f 关于 x x x 的偏导数, 记为

∂ f ∂ x ∣ ( x 0 , y 0 ) = lim ⁡ Δ x f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \frac{\partial f}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} xf(x0,y0)=ΔxlimΔxf(x0+Δx,y0)f(x0,y0)

类似的
∂ f ∂ y ∣ ( x 0 , y 0 ) = lim ⁡ Δ y f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \frac{\partial f}{\partial y}|_{(x_0,y_0)}= \lim_{\Delta y} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} yf(x0,y0)=ΔylimΔyf(x0,y0+Δy)f(x0,y0)

  • n n n 元函数的偏导数 u = f ( x 1 , ⋯ , x n ) u=f(x_1,\cdots,x_n) u=f(x1,,xn),
    ∂ f ∂ x i = lim ⁡ Δ x i f ( x 1 , ⋯ , x i + Δ x i , ⋯ , x n ) − f ( x 1 , ⋯ , x i , ⋯ , x n ) Δ x i \frac{\partial f}{\partial x_i}= \lim_{\Delta x_i} \frac{f(x_1,\cdots, x_i+\Delta x_i, \cdots,x_n)-f(x_1,\cdots, x_i, \cdots, x_n)}{\Delta x_i} xif=ΔxilimΔxif(x1,,xi+Δxi,,xn)f(x1,,xi,,xn)

导数性质 → \to 偏导数性质

加 : ∂ ( f ( x , y ) + g ( x , y ) ) ∂ x = ∂ f ∂ x + ∂ g ∂ x 加:\frac{\partial (f(x,y)+g(x,y))}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial x} :x(f(x,y)+g(x,y))=xf+xg
减 : ∂ ( f ( x , y ) − g ( x , y ) ) ∂ x = ∂ f ∂ x − ∂ g ∂ x 减:\frac{\partial (f(x,y)-g(x,y))}{\partial x}=\frac{\partial f}{\partial x}-\frac{\partial g}{\partial x} :x(f(x,y)g(x,y))=xfxg
乘 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = ∂ f ∂ x g + f ∂ g ∂ x 乘:\frac{\partial (f(x,y)g(x,y))}{\partial x}=\frac{\partial f}{\partial x} g+f\frac{\partial g}{\partial x} :x(f(x,y)g(x,y))=xfg+fxg
除 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = 1 g 2 ( ∂ f ∂ x g − f ∂ g ∂ x ) 除:\frac{\partial (\frac{f(x,y)}{g(x,y)})}{\partial x}=\frac{1}{g^2}\left(\frac{\partial f}{\partial x}g-f\frac{\partial g}{\partial x}\right) :x(g(x,y)f(x,y))=g21(xfgfxg)

高阶偏导数

∂ 2 f ∂ x 2 = ∂ ∂ x ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x^2}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) x22f=x(xf)
∂ 2 f ∂ x ∂ y = ∂ ∂ y ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x\partial y}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) xy2f=y(xf)
∂ 2 f ∂ y ∂ x = ∂ ∂ x ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y\partial x}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) yx2f=x(yf)
∂ 2 f ∂ y 2 = ∂ ∂ y ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y^2}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) y22f=y(yf)

  • ∂ 2 f ∂ y ∂ x \frac{\partial^2 f}{\partial y\partial x} yx2f, ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial x\partial y} xy2f 是连续函数时, ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y\partial x}=\frac{\partial^2 f}{\partial x\partial y} yx2f=xy2f.

全微分

u = f ( x , y ) u=f(x,y) u=f(x,y), $\Delta u= f(x+\Delta x, y+\Delta y)-f(x,y) $

定义 存在 A , B A,B A,B, Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z= A\Delta x+B\Delta y+ o(\rho) Δz=AΔx+BΔy+o(ρ), ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 , 称函数 f f f ( x , y ) (x,y) (x,y) 处可微, d z d z dz 称为全微分, ( A , B ) (A,B) (A,B) 称为梯度.

当函数 f f f 可微时, d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz= \frac{\partial f}{\partial x} dx+ \frac{\partial f}{\partial y}dy dz=xfdx+yfdy, 梯度计算公式为 ∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) ⊤ \nabla f(x,y)=(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})^\top f(x,y)=(xf,yf)

微分性质 → \to 全微分性质

可微函数:
加 : d ( f + g ) = d f + d g 加: d(f+g)=df+dg :d(f+g)=df+dg
减 : d ( f − g ) = d f − d g 减: d(f-g)=df-dg :d(fg)=dfdg
乘 : d ( f g ) = g d f + f d g 乘: d(fg)= g df+f dg :d(fg)=gdf+fdg
除 : d ( f g ) = g d f − f d g g 2 除:d\left(\frac{f}{g}\right)=\frac{g df- f dg}{g^2} :d(gf)=g2gdffdg

偏导数性质 → \to 梯度性质

可微函数:
加 : ∇ ( f + g ) = ∇ f + ∇ g 加: \nabla (f+g)=\nabla f+\nabla g :(f+g)=f+g
减 : ∇ ( f − g ) = ∇ f − ∇ g 减: \nabla (f-g)=\nabla f-\nabla g :(fg)=fg
乘 : ∇ ( f g ) = g ∇ f + f ∇ g 乘: \nabla (fg)= g \nabla f+f \nabla g :(fg)=gf+fg
除 : ∇ ( f g ) = g ∇ f − f ∇ g g 2 除:\nabla \left(\frac{f}{g}\right)=\frac{g \nabla f- f \nabla g}{g^2} :(gf)=g2gffg

∂ f ∂ x \frac{\partial f}{\partial x} xf, ∂ f ∂ y \frac{\partial f}{\partial y} yf 是连续函数时, f ( x , y ) f(x,y) f(x,y) 可微.

复合函数的微分法

双层复合偏导

一元内嵌一元函数 (全导数)

  • d d x f ( u ( x ) ) = d f d u d u d x \frac{d }{d x}f(u(x)) =\frac{d f}{d u}\frac{d u}{d x} dxdf(u(x))=dudfdxdu
f
u
x

一元内嵌二元函数

  • ∂ ∂ x f ( u ( x , y ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial x} xf(u(x,y))=dudfxu
  • ∂ ∂ y f ( u ( x , y ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial y} yf(u(x,y))=dudfyu
f
u
x
y

一元内嵌三元函数

  • ∂ ∂ x f ( u ( x , y , z ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial x} xf(u(x,y,z))=dudfxu
  • ∂ ∂ y f ( u ( x , y , z ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial y} yf(u(x,y,z))=dudfyu
  • ∂ ∂ z f ( u ( x , y , z ) ) = d f d u ∂ u ∂ z \frac{\partial }{\partial z}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial z} zf(u(x,y,z))=dudfzu
f
u
x
y
z

二元内嵌一元函数 (全导数)

  • ∂ ∂ x f ( u ( x ) , v ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x \frac{\partial }{\partial x}f(u(x),v(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x} xf(u(x),v(x))=ufdxdu+vfdxdv
f
u
v
x

二元内嵌二元函数

  • ∂ ∂ x f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} xf(u(x,y),v(x,y))=ufxu+vfxv
  • ∂ ∂ y f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} yf(u(x,y),v(x,y))=ufyu+vfyv
f
u
v
x
y

二元内嵌三元函数

  • ∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} xf(u(x,y,z),v(x,y,z))=ufxu+vfxv

  • ∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} yf(u(x,y,z),v(x,y,z))=ufyu+vfyv

  • ∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z \frac{\partial }{\partial z}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z} zf(u(x,y,z),v(x,y,z))=ufzu+vfzv

f
u
v
w
x
y

三元内嵌一元函数 (全导数)

  • ∂ ∂ x f ( u ( x ) , v ( x ) , w ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x + ∂ f ∂ w d w d x \frac{\partial }{\partial x}f(u(x),v(x),w(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x}+\frac{\partial f}{\partial w}\frac{d w}{d x} xf(u(x),v(x),w(x))=ufdxdu+vfdxdv+wfdxdw
f
u
v
w
x

三元内嵌二元函数

  • ∂ ∂ x f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} xf(u(x,y),v(x,y),w(x,y))=ufxu+vfxv+wfxw

  • ∂ ∂ y f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} yf(u(x,y),v(x,y),w(x,y))=ufyu+vfyv+wfyw

f
u
v
w
x
y

三元内嵌三元函数

  • ∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial}{\partial x}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} xf(u(x,y,z),v(x,y,z),w(x,y,z))=ufxu+vfxv+wfxw

  • ∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial}{\partial y}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} yf(u(x,y,z),v(x,y,z),w(x,y,z))=ufyu+vfyv+wfyw

  • ∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z + ∂ f ∂ w ∂ w ∂ z \frac{\partial}{\partial z}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial z} zf(u(x,y,z),v(x,y,z),w(x,y,z))=ufzu+vfzv+wfzw

f
u
v
w
x
y
z

(选看) 三层复合偏导

二元内嵌二元内嵌二元函数

  • ∂ ∂ s f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ s + ∂ u ∂ y ∂ y ∂ s ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ s + ∂ v ∂ y ∂ y ∂ s ) \frac{\partial }{\partial s}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial s})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial s}) sf(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=uf(xusx+yusy)+vf(xvsx+yvsy)

  • ∂ ∂ t f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ t + ∂ v ∂ y ∂ y ∂ t ) \frac{\partial }{\partial t}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial t})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial t}) tf(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=uf(xutx+yuty)+vf(xvtx+yvty)

f
u
v
x
y
s
t
http://www.lryc.cn/news/466919.html

相关文章:

  • Python爬取京东商品信息,详细讲解,手把手教学(附源码)
  • 大家有没有了解过TLKS-PLGS这款接地电阻在线监测装置?它在电力系统中能发挥什么作用呢?
  • Shell中的函数
  • 通过IP地址或者主机名添加打印机20241023
  • 基于SpringBoot+Vue智慧养老关爱系统【提供源码+答辩PPT+参考文档+项目部署】
  • 新手教学系列——利用短效代理快速搭建代理池
  • 实体与DTO如何转换
  • Docker 安装Postgres和PostGIS,并制作镜像
  • ES6:let和const命令解读以及变量的解构赋值
  • java-collection集合整理0.9.4
  • ParallelsDesktop20最新版本虚拟机 一键切换系统 游戏娱乐两不误
  • 现代C语言:C23标准重大更新
  • Maven进阶——坐标、依赖、仓库
  • Android中的内存泄漏及其检测方式
  • 【雷电模拟器命令合集操作大全】官方文档整理贴
  • redis的配置文件解析
  • Python中的元组和列表
  • 【AI战略思考7】粮草筹集完毕和我的朋友分类
  • 科大讯飞AI开发者大赛颁奖典礼,万码优才荣获前三甲!
  • Redis 哨兵机制
  • linux-磁盘io情况、性能排查
  • NC 单据模板自定义项 设置参照,比如部门参照、自定义参照等
  • table-cascade 使用
  • Android SELinux——策略文件配置结构(八)
  • 【数据结构与算法】队列——数据世界中的“有序使者”
  • yolov11 部署 TensorRT,预处理和后处理用 C++ cuda 加速,速度快到飞起
  • 国际期货收费行情源CTP推送式/期货配资软件开发对接行情源的技术性说明
  • 上拉电阻和下拉电阻在电路中的作用(一)
  • 怎么轻松把图片存入二维码?图片生成二维码的简单3步技巧
  • perl双引号内字符串的反斜线转义