当前位置: 首页 > news >正文

【模板】树状数组

目录:

单点修改,区间查询:

        题目描述:

        lowbit()运算:

        插入、修改单点数据:

        计算前缀和:

        完整代码:

区间修改,单点查询:

        计算差分数组:

        计算每个点的值:

        完整代码:


单点修改,区间查询:


题目描述:

如题,已知一个数列,你需要进行下面两种操作:

  • 将某一个数加上 x

  • 求出某区间每一个数的和

输入格式

第一行包含两个正整数 n, m,分别表示该数列数字的个数和操作的总个数。

第二行包含 n 个用空格分隔的整数,其中第 i 个数字表示数列第 i 项的初始值。

接下来 m 行每行包含 3 个整数,表示一个操作,具体如下:

  • 1 x k 含义:将第 x 个数加上 k

  • 2 x y 含义:输出区间 [x, y] 内每个数的和

输出格式

输出包含若干行整数,即为所有操作 2 的结果。

lowbit()运算:

//非负整数n在二进制表示下最低位1及其后面的0构成的数值
//eg.lowbit(12) = lowbit((1100)2) = (100)2 = 4
//将1100按位取反后加一得到0100,会发现除了最低位的一和后面的零,其余位上与原数均相反
//故两者按位与后正好得到最低位1及其后面的0构成的数值
//又取反加一为补码,故lowbit为k & -k
int lowbit(int k) {return k & -k;
}

 插入、修改单点数据:

//如图:
//tree[x]保存以x为根的子树中叶节点值的和
//将x转化为二进制后,发现每一层的末尾的零的个数都相同
//且tree[x]覆盖的长度即为lowbit(x)的值
//tree[x]的父节点为tree[x + lowbit(x)]
void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}

计算前缀和:

//由图可知,若求前7项的和,则该值为tree[7] + tree[6] + tree[4]
//故,通过循环可以求出结果
int sum(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}

完整代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int n, m, a, flag, p, q, tree[N];int lowbit(int k) {return k & -k;
}void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}int sum(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}int main() {scanf("%d %d", &n, &m);for(int i = 1; i <= n; ++i) {scanf("%d", &a);add(i, a);}for(int i = 1; i <= m; ++i) {scanf("%d %d %d", &flag, &p, &q);if(flag == 1)add(p, q);elseprintf("%d\n", sum(q) - sum(p - 1));}return 0;
}

区间修改,单点查询:


计算差分数组:

//与单点修改、区间查询类似
void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}

计算每个点的值:

//与单点修改、区间查询类似
//此时计算的结果为每个点的值
int query(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}

完整代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int n, m, now, last, flag, p, q, num, tree[N];int lowbit(int k) {return k & -k;
}void add(int x, int k) {while(x <= n) {tree[x] += k;x += lowbit(x);}
}int query(int x) {int ans = 0;while(x != 0) {ans += tree[x];x -= lowbit(x);}return ans;
}int main() {scanf("%d %d", &n, &m);//计算差分数组,将相差的值放入数组中//eg.原本的数组应为a[] = {1, 6, 8, 5, 10}//则差分数组应为b[] = {1, 5, 2, -3, 5}for(int i = 1; i <= n; ++i) {scanf("%d", &now);add(i, now - last);last = now;}for(int i = 1; i <= m; ++i) {scanf("%d", &flag);//若要修改区间[p, q]的值//例如上述举的例子,若要将区间[2, 4]均加上3//则原数组变为a[] = {1, 9, 11, 8, 10}//差分数组变为b[] = {1, 8, 2, -3, 2}//即对差分数组来说只需修改下标为p的值,和下标为q + 1的值if(flag == 1) {scanf("%d %d %d", &p, &q, &num);add(p, num);add(q + 1, -num);}//若查询某个点的值//前p个差分数组的值相加即为该点的值//与单点修改、区间查询中的求前缀和类似else {scanf("%d", &p);printf("%d\n", query(p));}}return 0;
}

http://www.lryc.cn/news/45257.html

相关文章:

  • 网站都变成灰色了,怎么实现的?
  • NeRF详解
  • Java之静态代码块和静态类、静态导入
  • Python3 File isatty() 、os.chflags()方法
  • 【SH_CO_TMT_PACKAGE保留60天数据和增加索引】
  • 2022蓝桥杯省赛——数位排序
  • 弥散磁共振成像在神经科学中的应用
  • 多进程(python)
  • 利用Kali工具进行信息收集(35)
  • 《程序员面试金典(第6版)》 面试题 08.11. 硬币(动态规划,组合问题,C++)
  • 实体商家做抖音运营如何做矩阵?
  • java 双列集合Map 万字详解
  • 【数据结构】二叉树<遍历>
  • linux查看硬件信息
  • 吐血整理,互联网大厂最常见的 1120 道 Java 面试题(带答案)整理
  • RabbitMQ如何避免消息丢失
  • 做算法题的正确姿势(不断更新)
  • p85 CTF夺旗-JAVA考点反编译XXE反序列化
  • FastJson——JSO字符串与对象的相互转化
  • 《程序员面试金典(第6版)》面试题 08.08. 有重复字符串的排列组合(回溯算法,全排列问题)C++
  • k8s API限流——server级别整体限流和客户端限流
  • 在华为做了三年软件测试被裁了,我该怎么办
  • Spring cloud 限流的多种方式
  • Linux命令·top
  • springmvc之系列文章
  • Matlab实现深度学习(附上完整仿真源码)
  • 我的谷歌书签
  • day3 数据库技术考点汇总
  • 学剪辑难吗 如何使用会声会影2023做剪辑视频
  • django学习日记