当前位置: 首页 > news >正文

《程序员面试金典(第6版)》面试题 08.08. 有重复字符串的排列组合(回溯算法,全排列问题)C++

题目描述

有重复字符串的排列组合。编写一种方法,计算某字符串的所有排列组合。

示例1:

  • 输入:S = “qqe”
    输出:[“eqq”,“qeq”,“qqe”]

示例2:

  • 输入:S = “ab”
    输出:[“ab”, “ba”]

提示:

  • 字符都是英文字母。
    字符串长度在[1, 9]之间。

解题思路与代码

这道题一看还是一道关于排列的问题。只要有关排列的问题,我们都可以通过回溯法去解决。

方法一: 回溯法 + 使用unordered_set数据结构进行去重

如果没有做过《程序员面试金典(第6版)》面试题 08.07. 无重复字符串的排列组合(回溯算法,全排列问题)C++
这道题的小伙伴,先去做一下这道题。

这道题与上面链接的那道题非常像,只不过,这里字符串中的字符开始出现有重复的字符了。所以我们做这道题的时候就需要去重。我们直接用unordered_set这种数据结构去去一下重好了。代码与上道题的代码没什么区别,这里给出这道题的代码:

class Solution {
public:vector<string> permutation(string S) {unordered_set<string> result;backtracking(S,result,0);vector<string> vec;for(auto a : result){vec.push_back(a);}return vec;}void backtracking(string& S,unordered_set<string>& result,int begin){if(begin == S.size()){result.insert(S);return;}for(int i = begin;i < S.size(); ++i){swap(S[i],S[begin]);backtracking(S,result,begin+1);swap(S[i],S[begin]);}}
};

在这里插入图片描述

复杂度分析

时间复杂度:

  • 这段代码的时间复杂度主要取决于两个部分:backtracking 函数的执行次数以及将结果从 unordered_set 转移到 vector 的时间。

  • backtracking 函数的执行次数:对于长度为 n 的字符串,我们需要对每个字符进行排列组合,这会产生 n! 个排列。在回溯算法中,我们会遍历整个排列空间。因此,backtracking 函数的执行次数为 O(n!)。

  • 将结果从 unordered_set 转移到 vector:result 中最多有 n! 个元素。遍历 result 并将其中的元素插入 vector 的时间复杂度为 O(n!)。

  • 综合这两部分,总的时间复杂度为 O(n!)。

空间复杂度:

  • 空间复杂度主要取决于三个方面:递归调用栈的深度、结果存储在 unordered_set 中所占用的空间,以及结果向量 vec 所占用的空间。

  • 递归调用栈的深度:在回溯算法中,递归调用栈的深度等于字符串的长度 n。因此,递归调用栈的空间复杂度为 O(n)。

  • 结果存储在 unordered_set 中所占用的空间:result 中最多有 n! 个元素,每个元素是一个长度为 n 的字符串。因此,结果存储在 unordered_set 中所占用的空间复杂度为 O(n * n!)。

  • 结果向量 vec 所占用的空间:vec 中有 n! 个元素,每个元素是一个长度为 n 的字符串。因此,结果向量所占用的空间复杂度为 O(n * n!)。

  • 由于这三部分空间是算法使用的空间,因此总的空间复杂度为这三者之和,即 O(n) + O(n * n!) + O(n * n!) = O(2 * n * n!) = O(n * n!)。

  • 所以,这段代码的时间复杂度为 O(n!),空间复杂度为 O(n * n!)。

方法二 :对代码一的方法进行优化。

在这道题里,因为可能有重复的字符,方法一是直接用unordered_set在结果处进行去重,重复的答案不会被存进集合中,但这种方法不会减少递归的此时。那有没有一种方法,可以在做交换的时候就进行剪枝操作而进行去重呢,而去减少递归的次数呢?

答案当然是有,我们可以通过一个unordered_set去记住在当前的这一层循环里出现过哪些字符,如果出现了重复的字符,那我们就跳过这次交换,直接进入下一次交换。这样也同样达到了去重的目的,也减少了递归的次数。但是不好的一点是增加了内存的存储空间,因为每一层递归都要创建一个unordered_set去存储出现过的字符。

具体代码如下:

class Solution {
public:vector<string> permutation(string S) {vector<string> result;backtracking(S, result, 0);return result;}void backtracking(string &S, vector<string> &result, int begin) {if (begin == S.size()) {result.push_back(S);return;}unordered_set<char> used_chars;  // 用于存储已经在当前位置出现过的字符for (int i = begin; i < S.size(); ++i) {if (used_chars.find(S[i]) != used_chars.end()) {continue;  // 如果当前字符已经在当前位置出现过,则跳过这次交换}used_chars.insert(S[i]);  // 记录当前字符swap(S[i], S[begin]);backtracking(S, result, begin + 1);swap(S[i], S[begin]);}}
};

在这里插入图片描述

复杂度分析

通过这种剪枝策略,我们避免了搜索重复的路径,从而降低了时间复杂度。然而,在最坏情况下(如所有字符都不同),算法的时间复杂度仍然是 O(n!)。空间复杂度与之前的分析相同,为 O(n * n!)。虽然这种剪枝策略不能在理论上改进时间复杂度,但在有重复字符的情况下,实际运行效率会有所提升,但是同样每一层都会多创建出一个unordered_set去存储至多n个字符,会多消耗一部分的内存空间。

方法三,对代码二的再次优化!

这一次我们写了一个hasDuplicate函数来检查有没有重复出现的字符。这样就不会使用额外的内存空间去存储字符了。
因为begin的值肯定是要比i小的,因为i会递增,而begin不会,从而我们在这个函数中,去递增begin,看看有没有会出现与i相当的字符,如果出现了,就说明有重复,就要跳过这个循环!

class Solution {
public:vector<string> permutation(string S) {vector<string> result;backtracking(S,result,0);return result;}void backtracking(string& S,vector<string>& result,int begin){if(begin == S.size()) {result.push_back(S);return;}for(int i = begin; i < S.size(); ++i){if(hasDuplicate(S,begin,i)) continue;swap(S[i],S[begin]);backtracking(S,result,begin+1);swap(S[i],S[begin]);}}bool hasDuplicate(string& S, int begin,int end){for(int i = begin; i < end; ++i)if(S[i] == S[end]) return true;return false;}
};

在这里插入图片描述

复杂度分析

时间复杂度:

  • permutation 函数的时间复杂度主要取决于 backtracking 函数。在最坏情况下,回溯算法将尝试所有可能的排列组合,即 n!。
  • hasDuplicate 函数的时间复杂度为 O(n)(在 for 循环内部进行比较)。
  • backtracking 函数中调用了 hasDuplicate 函数,所以在最坏情况下,总时间复杂度为 O(n! * n)。

空间复杂度:

  • 结果向量 result 的空间复杂度为 O(n!),因为它需要存储所有排列组合。
  • 递归栈的空间复杂度为 O(n),因为最深的递归调用次数等于字符串的长度。
  • 总的空间复杂度为 O(n! + n)。

综上所述,该算法的时间复杂度为 O(n! * n),空间复杂度为 O(n! + n)。

虽然说,代码1,2,3的时间复杂度都是O(n!),但是在代码三的实际时间复杂度要比1,2快了不少。

总结

这道题不算一道特别难的题。但是呢,剪枝和去重,才是这道题的重中之重。写出简洁并且高效的回溯算法并不容易。我们还得去多学习多总结!

http://www.lryc.cn/news/45237.html

相关文章:

  • k8s API限流——server级别整体限流和客户端限流
  • 在华为做了三年软件测试被裁了,我该怎么办
  • Spring cloud 限流的多种方式
  • Linux命令·top
  • springmvc之系列文章
  • Matlab实现深度学习(附上完整仿真源码)
  • 我的谷歌书签
  • day3 数据库技术考点汇总
  • 学剪辑难吗 如何使用会声会影2023做剪辑视频
  • django学习日记
  • 在线教学视频课程如何防止学员挂机?
  • 【Redis】安装配置
  • ChatGPT批量生成文章-ChatGPT文章生成器
  • Linux命令 ——sed
  • C++常用字符串string方法
  • XML树结构和语法
  • 【Qt】Qt单元测试详解(四):Google Test 断言
  • 句柄和指针的区别
  • Linux 网络编程学习笔记——十四、多线程编程
  • JS 获取时区
  • 【0183】PG内核客户端认证之将读取的token创建HbaToken(3 - 1)
  • 别把 OpenAI 太当回事,它远未达到替换前端的地步
  • 前端基础HTML、CSS--8(CSS-5)
  • 基于ASP网络办公OA系统的设计与实现
  • C语言计算机二级/C语言期末考试 刷题(五)
  • 2023-04-03 grafana-源码编译启动及添加prometheus数据源
  • 微软New Bing(GPT-4)写的Delphi诗歌
  • 【进程地址空间】
  • 递归dfs入门
  • 华为OD机试用java实现 -【吃火锅】