当前位置: 首页 > news >正文

贝叶斯估计(1):期末大乱炖

写在前面!

 

1 先验分布和后验分布

三种信息:总体信息、样本信息、先验信息

总体信息:“总体是正态分布”;样本信息:总体抽取的样本提供的信息,是最新鲜的信息;先验信息:在抽样之前就知道的关于统计问题的一些信息【来源于历史资料等】

贝叶斯公式

离散形式:

几个公式:

先验分布:

样本信息的综合:

三个信息的综合:

\theta进行估计:

求后验分布!!!
【1】连续时(先验分布)

(1)写出先验分布,如果不知道按照均匀分布处理

(2)计算样本X 和参数\theta的联合分布

样本似然函数 乘以 先验信息密度函数

(3)计算X的边际密度【m(x)】

(4)利用贝叶斯公式得到\theta的后验分布

所以\theta的范围在这里就是 大于样本数的的最大值-0.5 小于最小值+0.5

这样就定下了\theta的取值范围咯!!!!

具体视频启发见:已知观测值求后验分布-哔哩哔哩_bilibili

【2】离散

共轭先验分布

【1】正态分布[指的是样本]的共轭先验分布[先验和后验都是]是正态分布(之间的关系)

【2】二项分布中的成功概率\theta的共轭先验分布式贝塔分布

【3】泊松分布的均值\lambda的共轭先验分布是伽马分布

二项分布的进化,X是发生的次数,那么当抽取样本时,n\bar{x}就是总次数!!!!【可见例题5.3.1】

贝塔分布

伽马分布

特例:

先验分布超参数的确定

【1】利用先验矩

【2】利用先验分位数

【3】利用先验矩和先验分位数

充分统计量【更方便的计算出后验分布!】

作用:

应用:

p(x|\theta)是没有办法计算出来的因为,不知道具体取值的情况,但是p(\bar{x}|\theta)是知道的

2 贝叶斯推断

存在意义:

2.1 条件方法

2.2 估计

2.2.1 贝叶斯估计

例题1

例题2

例题3

贝叶斯假设 是假设\theta是均匀分布,当都为1 的时候贝塔分布退化成均匀分布

例题4

最大的取值不能超过观察值哦!!!

2.2.2 贝叶斯误差估计

后验均方误差的均值!

例题1  !!!!(先验分布是离散的)

后验密度达到最大的时候所对应的\theta 是最大后验估计

后验分布期望值是后验分布均值

例题2 (先验分布是连续的贝塔分布)

众数算出来的值其实就是贝塔分布函数达到最大时自变量的取值!!!!

2.3 区间估计

不用寻找枢轴量直接用后验分布就可以!!

例题1

110.38-1.96*8.32 = 94.07

110.38+1.96*8.32 = 126.69

2.4 假设检验

2.4.1 假设检验

接受最大后验概率的假设!!!!

例题1

计算出后验分布!!

均匀

2.4.2 贝叶斯因子

后验概率比较的方法!

后验机会比、前验机会比!可见2.4.4 例题2

贝叶斯因子表示数据X支持原假设的程度!

2.4.3 简单对简单【先计算贝叶斯因子】

例题1

2.4.4 复杂对复杂【计算后验概率比】

例题2

不用计算器的话:就是先标准化然后查表!

贝叶斯因子小这就不可以!

2.4.5 简单对复杂【先计算贝叶斯因子】

例题3

2.4.6 多重假设检验

例题4 

谁大接受谁!

2.5 预测

例题5

2.6 似然原理

3 先验分布的确定

3.1 主观概率

3.2 利用先验信息

3.2.1 直方图法(微重要)

例题1

3.2.2 选定先验密度函数形式再估计其超参数

通过矩估计的方法!

例题1延续

例题2

3.2.3 定分位度法和变分位度法【了解即可】

3.3 利用边缘分布确定先验分布

3.3.1 可直接求出边缘分布

例题1

让m(x)达到最大时 ,求出两个超参数的值

3.3.2 混合分布下求出边缘分布类似加权求和

例题2

3.3.3 先验选择的ML-LL方法

例题3 延续3.3.1的例题1

样本是从边缘分布里抽出来的当然可以用于边缘分布超参数的估计!!!!!

3.3.4 先验选择的矩方法

可通过公式进行简化计算!

\mu _m(\lambda ) = E^{\theta |\lambda }[\mu (\theta ))]

目标是求出\lambda

例题4

到此为止吧,我看不懂.....服了

3.4 无信息先验分布

4 决策中的收益、损失与效用

4.1 决策问题的三要素

4.2 决策准则

4.2.1 行动的容许性

例题1

4.2.2 决策准则【只使用先验信息】

【1】乐观准则(大中选大)

【2】悲观准则(小中选大)

【3】折中准则(加权)

例题

4.3 先验期望准则

使先验平均收益达到最大的行动a

例题

例题

这个只计算均值时发现有两个最优行动,因此再计算方差 选择方差小的!!!

P134【课本】

4.3.2 两个性质

都加不变,同一个状态的一行加一样的数不变!

4.4 损失函数

损失函数:“没有转到该赚到的钱!”

4.4.1 从收益到损失

例题【由收益矩阵得到损失矩阵】

损失为,当前位 与赚最多钱时的差距!(状态是一定的!!!)

也是一个状态一算!

例题(已知收益函数的表达式求损失函数!)

\theta进行积分得到关于a的表达式,然后求出这个表达式的最小值!!!

4.4.2 损失函数下的悲观准则

例题(收益和损失悲观)

注意悲观准则在 收益函数中时(小中选大);在 损失函数中时(大中选小)

用损失函数进行决策合理一点!

例题

4.4.3 损失函数下的先期望准则

例题

课本【P141】

例题p142

4.5 常用损失函数

4.5.1 常用损失函数

【1】平均损失函数

【2】线性损失函数

【3】0-1损失函数

【4】多元二次损失函数

【5】二行动线性决策问题的损失函数

例题【后序步骤和5.1 中的例题是一样的!】

先求平衡值就是相等的时候\theta的取值!

5 贝叶斯决策

5.1 贝叶斯决策问题定义

先验信息和样本信息 都使用的决策问题!

按照后验平均损失最小 得到贝叶斯决策

优缺点

例题5.1.1P163!!!

让先验期望损失最小是第四章,把\theta弄没,离散的时候是相乘

贝叶斯要在这个机会基础上基础上进行抽样!

5.2 后验风险准则【贝叶斯准则是使用这个的】

5.2.1 后验风险

例题【贝叶斯决策】!!!!!

【1】第四章

【3】贝叶斯

后验分布!:

损失函数的计算后的个数等于:x的取值【抽样后数据的情况】*行动的个数!

损失函数:

行动2:变成只拿出箱子里的两个进行检查 那么需要支付1.6元,然后如果再进行赔偿!

5.2.2 决策函数

5.2.3 后验风险准则

例题5.2.3

例题5.2.4

5.3 常用损失函数下的贝叶斯估计!!!!

5.3.1 平方损失函数下的贝叶斯估计

【1】定理1在平均损失下

【2】定理2在加权平方损失

【3】定理3在多元二次损失函数

例题5.3.1

5.3.2 线性损失函数下的贝叶斯估计

【1】定理1

例题5.3.6

后验分布的积分是1

5.3.3 有限个行动问题的假设检验

 6 统计决策理论

只使用样本信息!

6.1 风险函数

6.1.1 风险函数

6.1.2 决策函数的最优性

6.1.3 统计决策中的点估计问题

6.1.4 统计决策中的区间估计问题

6.2 容许性

例题

6.3 最小最大准则

例题

例题

http://www.lryc.cn/news/395009.html

相关文章:

  • 电脑找回彻底删除文件?四个实测效果的方法【一键找回】
  • java开发报错
  • 基于python 的动态虚拟主机
  • 绝地求生PUBG没有开始游戏按钮的解决办法
  • 开始尝试从0写一个项目--前端(一)
  • 【Java探索之旅】多态:向上下转型、多态优缺点、构造函数陷阱
  • Linux上web服务器搭建(Apache、Nginx)
  • Django QuerySet对象,exclude()方法
  • Qt/C++音视频开发78-获取本地摄像头支持的分辨率/帧率/格式等信息/mjpeg/yuyv/h264
  • Go bufio包
  • C++ 类和对象 拷贝构造函数
  • C# —— Math对象
  • Face_recognition实现人脸识别
  • 1-3分钟爆款视频素材在哪找啊?这9个热门爆款素材网站分享给你
  • 武汉免费 【FPGA实战训练】 Vivado入门与设计师资课程
  • 【vite创建项目】
  • 最优化方法 运筹学【】
  • 探索 WebKit 的动感世界:设备方向和运动支持全解析
  • 高考假期预习指南
  • Spring Boot 事件监听机制工作原理
  • 【AI大模型】驱动的未来:穿戴设备如何革新血液、皮肤检测与营养健康管理
  • 【FFmpeg】avcodec_open2函数
  • matlab:对带参数a关于x的方程求解
  • Yolov10训练,转化onnx,推理
  • GEE代码实例教程详解:洪水灾害监测
  • 运维锅总详解系统设计原则
  • 深度学习笔记: 最详尽解释预测系统的分类指标(精确率、召回率和 F1 值)
  • GEE代码实例教程详解:MODIS土地覆盖分类与面积计算
  • LT86101UXE 国产原装 HDMI2.0 / DVI中继器方案 分辨率 4Kx2K 用于多显示器 DVI/HDMI电缆扩展模块
  • FastApi中的常见请求类型