当前位置: 首页 > news >正文

秋招突击——6/28、6.29——复习{数位DP——度的数量}——新作{}

文章目录

    • 引言
    • 复习
      • 数位DP——度的数量
        • 个人实现
        • 参考实现
    • 总结

引言

  • 头一次产生了那么强烈的动摇,对于未来没有任何的感觉的,不知道将会往哪里走,不知道怎么办。可能还是因为实习吧,再加上最近复习也没有什么进展,并不知道该怎么办,投的提前批基本上没什么回应,投的实习基本上都挂了。
  • 在加上不在学校,没有办法和同学一块共享信息,一个人总是觉得有点孤零零的,难受,并且是忧郁的。
  • 想那么多也没用,还是得继续复习。按照我的计划来。
  • 上午出去有事,基本上没有刷算法,下午才开始刷算法。

复习

数位DP——度的数量

在这里插入图片描述

  • 这一类题型之前基本上都没有做过,现在得好好补充一下,感觉听名字和状态压缩DP很像。

注意

  • X和Y是区间长度,是INT类型的数字的上限,并且只能是正数
  • 左右区间的都是闭合的,所以临界条件是两边相等,仅仅只有一个数字。
个人实现
  • 首先,这里得先解决一个数字,才能解决所有的数字,所以得先专注于解决一个数字的判定。
  • 这里是B的整数次幂,所以可以想成若干进制去思考,之前应该做过类似的出发是一个思路,肯定是能够先用高次幂的结果进行表示,然后再用低次幂的结果进行表示。然后在判定这个数字能否用一个较低位进行表示,这道题就算是结束了。
#include <iostream>
#include <vector>using namespace std;int x,y,k,b;
vector<int> exp;int main(){cin>>x>>y;cin>>k>>b;// 保存b的不同次幂的中间结果int res = 0;int i=1;exp.push_back(1);for ( i = b; i <= y ; i *= b)exp.push_back(i);for (int i = x; i <= y; ++i) {// 判断每一个数字是否能够使用对应的数字进行保存int cnt = k,temp = i;for (int j = exp.size() - 1; j >= 0 ; j --) {if (exp[j] <= temp){temp -= exp[j];cnt --;if (cnt >= 0 ){if (cnt == 0 && temp == 0)res ++;}elsebreak;}}}cout<<res;
}

实验结果如下

  • 我的时间复杂度太高了,遍历所有的数字,然后在遍历每一个数字,看看能否出现对应的结果。相当于使(y - x) * k相当远的平方的运算时间复杂度。
    在这里插入图片描述
参考实现
  • 这里应该是使用了数位DP,之前并没有学过。

数位DP的相关技巧

  • 区间转成边界相减问题
    • 计算的区间【X,Y】中所有符合条件的数字,使用1到Y的所有符合条件的数字的数量,减去1到X中所有符合条件的数字的数量。【X,Y】 = f(Y) - f(X - 1)
  • 从树的角度去考虑数位DP问题
    • 对于每一个数字的位数,只有两种情况,就是加入对应的分支以及不加入对应的分支等。

这里完全跳过了,看不懂,大约花了差不多一个小时,视频讲解有问题在加上题目的难度比较大,以后调整自己的复习思路,不在学习这种难度较高的算法题,主要还是刷对应的笔试题库

#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 35;int l, r, k, b;
int a[N], al;
int f[N][N];int dp(int pos, int st, int op) //op: 1=,0<
{//枚举到最后一位数位,是否恰有k个不同的1(也是递归的终止条件)if (!pos) return st == k;//记忆化搜索,前提是不贴着上界(可以枚举满这一位所有的数字)if (!op && ~f[pos][st]) return f[pos][st];//01数位dp,贴着上界时,本轮能枚举的最大数就是上界数位的数字和1之间的最小值int res = 0, maxx = op ? min(a[pos], 1) : 1;for (int i = 0; i <= maxx; i ++ ){if (st + i > k) continue;res += dp(pos - 1, st + i, op && i == a[pos]);}return op ? res : f[pos][st] = res;
}
int calc(int x)
{al = 0; memset(f, -1, sizeof f);        //模板的必要初始化步骤while (x) a[ ++ al] = x % b, x /= b;  //把x按照进制分解到数组中return dp(al, 0, 1);
}
int main()
{cin >> l >> r >> k >> b;cout << calc(r) - calc(l - 1) << endl;return 0;
}

作者:一只野生彩色铅笔
链接:https://www.acwing.com/solution/content/66855/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

总结

  • 明天朋友来家里做客,忙完这一阵之后,就闭门谢客,专心好好准备秋招。马上第一批就开始了,但是我的项目还是没有准备好,进度太慢了,不行的。

  • 我就在想,我真的有必要刷这么多算法进阶题目吗?今天的数位DP好难呀,感觉要花一上午,不如多花点时间去做热搜题目的一百道题。感觉到此为止了,不想再花时间去做这写题目了,数位DP太难了,根本就不会做。讲的有问题。

  • 不想浪费时间了,单纯的针对一百热题吧,不在刷什么难题了,只能用题库堆起来,然后如果有不会的题目,再去看他的讲解,不能在这样往下跟了,然后每天上午的题目,就是单纯复习现在已经学到的相关算法了。 我是找工作的,不是面对算法竞赛的。

  • 大概看了一下,就课程安排来说,虽然刷的是leetcode,但是还是会提到对应的题型进行讲解,所以转变以下自己的思路,不然这样化的时间实在太多了,完全没有必要。

  • 而且我大概看了一下,基本上我在面试中遇到的问题,在这里基本上都能遇见,在腾讯面试中遇见的使用LRU,然后华为面试中遇见的三数之和等等。还是调整一下重点,重点围绕以下两个课题,分别是

    • leetcode热题100道
    • 面试经典150道
  • 差不多一天三到四道题,差不多一个月刷一遍,还能回顾一遍。不要浪费时间。

http://www.lryc.cn/news/387389.html

相关文章:

  • Spring Boot中使用Thymeleaf进行页面渲染
  • 恢复策略(下)-事务故障后的数据库恢复、系统故障后的数据库恢复(检查点技术)、介质故障后的数据库恢复
  • 如何知道docker谁占用的显卡的显存?
  • wps linux node.js 加载项开发,和离线部署方案
  • 红队内网攻防渗透:内网渗透之内网对抗:横向移动篇Kerberos委派安全非约束系约束系RBCD资源系Spooler利用
  • nginx上传文件限制
  • 76. 最小覆盖子串(困难)
  • K8S 集群节点扩容
  • AI大模型技术在音乐创造的应用前景
  • Linux多进程和多线程(一)-进程的概念和创建
  • 熊猫烧香是什么?
  • 使用Vue3和Tailwind CSS快速搭建响应式布局
  • J019_选择排序
  • 【linux】vim的使用
  • 【工具测评】ONLYOFFICE8.1版本桌面编辑器测评:好用!
  • 核方法总结(四)——高斯过程回归学习笔记
  • 【Python3的内置函数和使用方法】
  • 递推算法计算信号特征
  • spring-boot-configuration-processor注释处理器
  • Python和MATLAB粘性力接触力动态模型半隐式欧拉算法
  • webstorm无法识别tsconfig.json引用项目配置文件中的路径别名
  • qiankun微前端:qiankun+vite+vue3+ts(未完待续..)
  • 001:开源交易系统开发实战开篇
  • Pytorch实战(一):LeNet神经网络
  • RabbitMq的基础及springAmqp的使用
  • uniapp uniCloud云开发
  • 智能扫地机,让生活电器更加便民-NV040D扫地机语音方案
  • 【后端面试题】【中间件】【NoSQL】ElasticSearch索引机制和高性能的面试思路
  • 【漏洞复现】时空智友ERP updater.uploadStudioFile接口处存在任意文件上传
  • [leetcode hot 150]第五百三十题,二叉搜索树的最小绝对差