当前位置: 首页 > news >正文

Python | 使用均值编码(MeanEncoding)处理分类特征

在特征工程中,将分类特征转换为数字特征的任务称为编码。

有多种方法来处理分类特征,如OneHotEncoding和LabelEncoding,FrequencyEncoding或通过其计数替换分类特征。同样,我们可以使用均值编码(MeanEncoding)。

均值编码

均值编码是一种将类别特征映射为目标变量均值的编码方法。它利用了目标变量在不同类别取值上的统计特性,为每个类别赋予一个相应的编码值。这种编码方法可以在一定程度上保留类别特征的信息,并且通常能够提供比独热编码更紧凑的表示。

对于高基数定性特征(类别特征)的数据预处理,均值编码是一种有效的编码方式。在实际应用中,这类特征工程能极大提升模型的性能。

应用场景

均值编码在以下应用场景中较为常见:

  1. 分类问题:在分类问题中,均值编码可以将类别特征转换为相应的均值,从而为每个类别赋予一个独特的编码值。这种编码方法可以保留类别特征的信息,并且通常能够提供比独热编码更紧凑的表示。
  2. 回归问题:在回归问题中,均值编码可以将类别特征转换为相应的均值,以帮助模型更好地理解类别特征与目标变量之间的关系。通过使用均值编码,回归模型可以更好地处理类别特征,并提高预测的准确性。
  3. 文本分类:在文本分类中,均值编码可以用于将文本中的词语或短语转换为相应的均值,以帮助模型更好地理解文本内容。通过使用均值编码,文本分类模型可以更好地处理文本数据,并提高分类的准确性。
  4. 图像分类:在图像分类中,均值编码可以用于将图像中的特征转换为相应的均值,以帮助模型更好地理解图像内容。通过使用均值编码,图像分类模型可以更好地处理图像数据,并提高分类的准确性。

需要注意的是,均值编码仅适用于高基数定性特征的数据预处理。对于连续型特征或低基数定性特征,均值编码可能并不适用。在选择合适的编码方法时,应根据具体的数据类型和应用场景进行评估和选择。

案例

# importing libraries 
import pandas as pd # creating dataset 
data={'SubjectName':['s1','s2','s3','s1','s4','s3','s2','s1','s2','s4','s1'], 'Target':[1,0,1,1,1,0,0,1,1,1,0]} df = pd.DataFrame(data) print(df) 

输出

     SubjectName  Target
0    s1    1
1    s2    0
2    s3    1
3    s1    1
4    s4    1
5    s3    0
6    s2    0
7    s1    1
8    s2    1
9    s4    1
10    s1    0

统计SubjectName的数据计数

df.groupby(['SubjectName'])['Target'].count() 

输出

subjectNames1         4s2         3s3         2s4         2
Name: Target, dtype: int64

具有SubjectName的groupby数据及其Target平均值

df.groupby(['SubjectName'])['Target'].mean() 

输出

subjectName
s1         0.750000
s2         0.333333
s3         0.500000
s4         1.000000
Name: Target, dtype: float64

通过map对象映射均值到df[‘SubjectName’]

Mean_encoded_subject = df.groupby(['SubjectName'])['Target'].mean().to_dict() df['SubjectName'] =  df['SubjectName'].map(Mean_encoded_subject) print(df) 

输出

    SubjectName    Target
0    0.750000    1
1    0.333333    0
2    0.500000    1
3    0.750000    1
4    1.000000    1
5    0.500000    0
6    0.333333    0
7    0.750000    1
8    0.333333    1
9    1.000000    1
10    0.750000    0

均值编码的优缺点

均值编码是一种将类别特征转换为相应均值的编码方法。以下是均值编码的优缺点:

优点:

  • 适用于高基数定性特征的数据预处理,能够保留类别特征的信息,提供更紧凑的表示。
  • 可以提高分类和回归模型的性能,尤其是在处理类别特征时。
  • 可以减少模型过拟合的风险,因为它可以减少特征的维度。

缺点:

  • 对于低基数定性特征,均值编码可能并不适用,因为它可能会忽略类别特征中的重要信息。
  • 在处理具有不同类别的特征时,均值编码可能会引入偏差,因为它将每个类别视为独立的变量。
  • 当类别特征的值非常不平衡时,均值编码可能会产生偏差,导致模型性能下降。
  • 在某些情况下,均值编码可能会引入额外的计算开销,尤其是在处理大规模数据集时。

需要注意的是,在选择编码方法时,应根据具体的数据类型、应用场景和模型需求进行评估和选择。除了均值编码外,还有其他的编码方法可供选择,如独热编码、目标编码等。每种编码方法都有其优缺点,应根据具体情况进行选择。

http://www.lryc.cn/news/384903.html

相关文章:

  • 面试-java异常体系
  • Clickhouse 的性能优化实践总结
  • 变工况下转子、轴承数据采集及测试
  • 泰迪智能科技与成都文理学院人工智能与大数据学院开展校企合作交流
  • ubuntu22.04安装初始化
  • 学习新语言方法总结(一)
  • Mysql数据的备份与恢复
  • 规上!西安市支持培育商贸企业达限纳统应统尽统申报奖励补助要求政策
  • Go语言测试第二弹——基准测试
  • 关于“刘亦菲为什么无人敢娶”的问题❗❗❗
  • LeetCode:经典题之141、142 题解及延伸
  • rk3568 OpenHarmony 串口uart与电脑通讯开发案例
  • canvas画布旋转问题
  • vue3 【提效】自动导入框架方法 unplugin-auto-import 实用教程
  • clip系列改进Lseg、 group ViT、ViLD、Glip
  • Ubuntu下TensorRT与trtexec工具的安装
  • MySQL定时任务
  • Pandas实用Excel数据汇总
  • 【计算机网络】[第4章 网络层][自用]
  • Unity3D Entity_CacheService实现详解
  • DLMS/COSEM协议—(Green-Book)Gateway protocol
  • Android高级面试_12_项目经验梳理
  • 【项目实训】解决前后端跨域问题
  • Java反射API详解与应用场景
  • 【例子】webpack 开发一个可以加载 markdown 文件的加载器 loader 案例
  • 揭秘!这款电路设计工具让学校师生都爱不释手——SmartEDA的魔力何在?
  • onlyoffice实现打开文档的功能
  • 基于 SpringBoot + Vue 的图书购物商城项目
  • 如何使用kimi智能助手:您的智能生活小助手
  • sql操作