当前位置: 首页 > news >正文

DFS算法系列 回溯

DFS算法系列-回溯

文章目录

  • DFS算法系列-回溯
    • 1. 算法介绍
    • 2. 算法应用
      • 2.1 全排列
      • 2.2 组合
      • 2.3 子集
    • 3. 总结

1. 算法介绍

回溯算法是一种经典的递归算法,通常被用来解决排列问题、组合问题和搜索问题

基本思想

从一个初始状态开始,按一定的规则向前搜索,当搜索遇到瓶颈无法再前进时,回到当前状态的上一个状态,按照新的要求/条件继续向前搜索,直至所有可用条件都遍历完成。

简单的说就是:不撞南墙不回头

对于回溯算法,其核心就在于不断的"试错",若选择正确则继续往下搜索,否则就"回头"选择另一个选项继续往下搜索。

下面提供一个回溯算法的模板(模板只是对算法理解的总结概况,相较于没有思考的套模板,理解其中的算法思想更加重要–>通过做题积累)

List<List<Integer>> ret;
List<Integer> path; void dfs(int[] nums, ...) {// 满⾜结束条件if (/* 满⾜结束条件 */) {// 将路径添加到结果集中ret.add(new ArrayList<>(path));return;}// 遍历所有选择for (int i = 0;i < nums.size();i++) {// 做出选择path.add(nums[i]);  // 做出当前选择后继续搜索dfs(path, nums);// 恢复现场path.remove(path.size() - 1);}
}

其中path用来记录每次选择后改变的路径nums[i]表示当前做出的选择,并且在当前选择满足递归结束条件后,将当前路径添加到结果集中,结束当前层递归并恢复现场,即恢复刚刚完成修改的路径到上一个状态,才能继续处理当前层的另一个选择,如下图所示:

在这里插入图片描述

了解完回溯算法,我们来做一些相关的算法题加深印象!

2. 算法应用

对于回溯(以及DFS相关的题),建议的解题步骤:

  1. 先画决策树
  2. 根据决策树编写函数体,可设置全局变量、添加剪枝提高效率;
  3. 找到递归出口

2.1 全排列

题目链接:[全排列]

决策树

在这里插入图片描述

代码示例

class Solution {List<List<Integer>> ret;List<Integer> path;boolean[] check;public List<List<Integer>> permute(int[] nums) {ret = new ArrayList<>();path = new ArrayList<>();check = new boolean[nums.length];dfs(nums);return ret;}void dfs(int[] nums) {if (path.size() == nums.length) {ret.add(new ArrayList(path));return;}for (int i = 0;i < nums.length;i++) { // 这里让i=0,使下一层选项依旧为所有情况(1,2,3,4)if (!check[i]) { // check数组用来记录当前数字是否被使用check[i] = true;   path.add(nums[i]); // 将数字添加到路径中dfs(nums);check[i] = false;path.remove(path.size() - 1);}}}
}

2.2 组合

题目链接:[组合]

决策树:

在这里插入图片描述

代码示例

class Solution {List<List<Integer>> ret;List<Integer> path;boolean[] check;int len;int pre;public List<List<Integer>> combine(int n, int k) {ret = new ArrayList<>();path = new ArrayList<>();check = new boolean[n + 1];len = k;int[] nums = new int[n + 1];for (int i = 1;i <= n;i++) {nums[i] = i;}dfs(nums, 1);return ret;}public void dfs(int[] nums, int pos) {if (path.size() == len) { // 当路径长度和要求的组合数相等时返回ret.add(new ArrayList<>(path));return;}for (int i = pos;i <= nums.length - 1;i++) { // 这里让i=pos,使下一层选项不会出现当前数字,并且下层选项从pos+1开始if (!check[i]) {	path.add(nums[i]);  check[i] = true;dfs(nums, i + 1);path.remove(path.size() - 1);check[i] = false;}}}
}

注:这里让i=pos,使下一层选项不会出现当前数字,并且下层选项从pos+1开始若为i = 0,则使下一层选项依旧为所有情况(1,2,3)

在这里插入图片描述

2.3 子集

题目链接:[子集]

决策树

在这里插入图片描述

代码示例

class Solution {static List<List<Integer>> ret;static List<Integer> path;public List<List<Integer>> subsets(int[] nums) {ret = new ArrayList<>();path = new ArrayList<>();dfs(nums, 0);return ret;}public void dfs(int[] nums, int cur) {ret.add(new ArrayList<>(path)); // 此处不设出口目的是将每个节点路径都添加到ret中for (int i = cur;i < nums.length;i++) { // 这里让i=cur,使下一层选项不会出现当前数字,并且下层选项从cur+1开始path.add(nums[i]);dfs(nums, i + 1);path.remove(path.size() - 1); }}
}

3. 总结

总的来说,回溯就是不断的"试错"并回头进行新的选择,和回溯相关的题就要把决策树画出来,通过它来找到我们的递归出口并编写函数体(注意for循环中起始标的使用),注意记得恢复现场哦!

http://www.lryc.cn/news/339193.html

相关文章:

  • Linux C应用编程:MQTT物联网
  • 企业常用Linux文件命令相关知识+小案例
  • Istio介绍
  • 代码随想录算法训练营第四十七天|leetcode115、392题
  • 将Ubuntu18.04默认的python3.6升级到python3.8
  • Python和Java哪个更适合后端开发?
  • Python+pytest接口自动化之cookie绕过登录(保持登录状态)
  • 什么数据集成(Data Integration):如何将业务数据集成到云平台?
  • 国外EDM邮件群发多少钱?哪个软件好?
  • C语言入门算法——回文数
  • OceanBase—操作实践
  • 智慧用电安全管理系统
  • Rust语言入门第二篇-Cargo教程
  • 测试用例的编写方式
  • HarmonyOS实战开发-状态管理、通过使用页面级的状态变量 和应用级的状态变量 来实现应用的状态管理。
  • 【Java开发指南 | 第二篇】标识符、Java关键字及注释
  • 3D可视化技术:研发基地的科技新篇章
  • 蓝旭前端05:JavaScript进阶
  • 【docker-compose】安装及配置
  • 【第十五届】蓝桥杯省赛C++b组
  • thinkphp6 Driver [Think] not supported.
  • 爱自然生命力专项基金:“爱·启航”残障家庭教育援助项目帮扶上万残障家庭
  • 【ubuntu】如何追加path
  • 用html写一个有趣的鬼魂动画
  • 【C++软件调试技术】C++软件开发维护过程中典型调试问题的解答与总结
  • Pygame经典游戏:贪吃蛇
  • 推荐一个免费使用Claude 3, GPT4和Gemini 1.5 Pro的网站
  • An Investigation of Geographic Mapping Techniques for Internet Hosts(2001年)第二部分
  • 解锁生成式 AI 的力量:a16z 提供的 16 个企业指南
  • Kylin使用心得