当前位置: 首页 > news >正文

【深度学习目标检测】十九、基于深度学习的芒果计数分割系统-含数据集、GUI和源码(python,yolov8)

使用深度学习算法检测芒果具有显著的优势和应用价值。以下是几个主要原因:

  1. 特征学习的能力:深度学习,特别是卷积神经网络(CNN),能够从大量的芒果图像中自动学习和提取特征。这些特征可能是传统方法难以手动设计的,但对于芒果的检测和识别却至关重要。
  2. 适应复杂环境:芒果生长在不同的环境和条件下,其外观、颜色、形状等都可能发生变化。深度学习算法通过大量的训练数据,可以学习到这些变化,从而在不同环境下都能准确地检测芒果。
  3. 处理大数据:在芒果检测中,通常需要处理大量的图像数据。深度学习算法可以高效地处理这些数据,并快速给出检测结果。
  4. 减少人工干预:传统的芒果检测方法可能需要人工目视观察或者使用特定的工具,这既费时又费力。深度学习算法可以实现自动化检测,减少人工干预,提高检测效率。
  5. 提高检测准确性:深度学习算法在训练过程中不断优化,可以实现对芒果的精确检测。与传统方法相比,深度学习算法具有更高的检测准确率和鲁棒性。

综上所述,使用深度学习算法检测芒果可以提高检测效率、准确性和自动化水平,是芒果检测领域的一种重要技术手段。

本文介绍了基于深度学习yolov8的芒果检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

芒果实例分割数据集包含453个训练数据,91个测试数据,数据如下所示:

为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:mango-yolov8数据集

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件mango.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\mango-segmentation-dataset\mango_yolov8  # 替换为自己的数据集路径
train: images/train 
val: images/test 
test: images/test  # Classes
names:# 0: normal0: mango

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo segment train project=mango name=train exist_ok data=mango/mango.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo segment val imgsz=640 model=mango/train/weights/best.pt data=mango/mango.yaml

精度如下:

Ultralytics YOLOv8.1.10 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
YOLOv8n-seg summary (fused): 195 layers, 3258259 parameters, 0 gradients, 12.0 GFLOPs
val: Scanning D:\DeepLearning\datasets\csdn\mango-segmentation-dataset\mango_yolov8\labels\test.cache... 90 images, 0 backgrounds, 0 corrupt: 100%|██████████| 90/90 [00:00<? Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|██████████| 6/6 [00:02<00:00,  2.1all         90        578      0.961      0.953      0.985      0.892       0.96      0.952      0.985      0.837
Speed: 5.1ms preprocess, 8.0ms inference, 0.0ms loss, 2.2ms postprocess per image
Results saved to runs\segment\val
💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')image_path = 'test.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的芒果计数分割系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

http://www.lryc.cn/news/306924.html

相关文章:

  • 骑砍战团MOD开发(48)-多人联机模式开发环境搭建
  • Java+SpringBoot+Vue+MySQL:美食推荐系统的技术革新
  • 【服务发现--ingress】
  • Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细
  • 苹果分拣检测YOLOV8NANO
  • 使用 Verilog 做一个可编程数字延迟定时器 LS7211-7212
  • 戏说c语言文章汇总
  • 面试redis篇-12Redis集群方案-分片集群
  • 【Java EE初阶二十三】servlet的简单理解
  • c++ http操作接口
  • oracle官网下载早期jdk版本
  • Python爬虫实战:图片爬取与保存
  • CMS垃圾回收器
  • 【力扣白嫖日记】184.部门工资最高的员工
  • JAVA讲解算法-排序算法-选择排序算法-02
  • 【初始RabbitMQ】高级发布确认的实现
  • 用39块钱的全志V851se视觉开发板做了个小相机,还可以物品识别、自动追焦!
  • 主从复制实现Redis集群
  • 高分文献解读|3D打印骨支架实现梯度密度颌骨功能性重建
  • 大型电商日志离线分析系统(一)
  • FL Studio Fruity Edition2024中文入门版Win/Mac
  • 学习vue3第二节(使用vite 创建vue3项目)
  • 基于Siamese网络的zero-shot意图分类
  • Java架构师之路五、微服务:微服务架构、服务注册与发现、服务治理、服务监控、容器化等。
  • [计算机网络]--IP协议
  • MySQL问题记录
  • LeetCode_Java_动态规划系列(1)(题目+思路+代码)
  • Linux使用Docker部署在线协作白板WBO并结合内网穿透发布公网远程访问
  • petalinux烧写image.ub报错
  • [足式机器人]Part2 Dr. CAN学习笔记-Ch00-2 - 数学知识基础