当前位置: 首页 > news >正文

【阅读笔记】SecureML: A System for ScalablePrivacy-Preserving Machine Learning

1. Motivation 

针对机器学习中的出现的数据隐私泄露的风险,提出了线性回归、逻辑回归以及简单神经网络的隐私保护模型。

2. Contributions

2.1 为线性回归、逻辑回归以及神经网络设计安全计算协议

2.1.1.1 线性回归

线性回归损失函数为:

  \small C(w)=\frac{1}{n}\sum C_i(w),\small C_i(\mathbf{w})=\frac{1}{2}(\mathbf{x_i}\cdot \mathbf{w}-y_i)^2

采用SGD算法处理损失函数,权重w的更新公式为:

\small w_{j}:=w_{j}-\alpha \frac{\partial C_{i}(\mathbf{w})}{\partial w_{j}}

式子只有加法、乘法运算,秘密分享的形式为:

\small \langle w_j\rangle:=\left\langle w_{j}\right\rangle-\alpha \operatorname{Mul}^{A}\left(\sum_{k=1}^{d} \operatorname{Mul}^{A}\left(\left\langle x_{i k}\right\rangle,\left\langle w_{k}\right\rangle\right)-\left\langle y_{i}\right\rangle,\left\langle x_{i j}\right\rangle\right)

写成向量的形式为:

\small \langle \mathbf{w}\rangle:=\langle \mathbf{w}\rangle-\frac{1}{|B|} \alpha \operatorname{Mul}^{A}\left(\left\langle\mathbf{X}_{B}^{T}\right\rangle, \operatorname{Mul}^{A}\left(\left\langle\mathbf{X}_{B}\right\rangle,\langle\mathbf{w}\rangle\right)-\left\langle\mathbf{Y}_{B}\right\rangle\right)

根据Beaver's triple 计算矩阵乘法:

这里需要注意的是文章中说明的是两个服务器\small S_0,S_1,都以获得数据的一个份额,并不是各方持有一份完整的数据。

可得:\small \langle\mathbf{C}\rangle_{i}=-i \cdot \mathbf{E} \times \mathbf{F}+\langle\mathbf{A}\rangle_{i} \times \mathbf{F}+\mathbf{E} \times\langle\mathbf{B}\rangle_{i}+\langle\mathbf{Z}\rangle_{i},之后的乘法运算都依据这个式子。

完整过程如下:

2.2 运算中小数的处理

计算小数乘法,x*y,假设x和y都最多有D为小数。

(1)将x和y进行扩大

x^{'}=2^{l_D}x,y^{'}=2^{l_D}y

(2)截断小数

        扩大后结果为z=x^{'}y^{'},小数位数最多D为,所以将最后D位截取,截断后的结果可写为z=z_1\cdot2^{l_D}+z_2,用[z]表示截断操作则最的相乘结果为z_1

2.3 优化激活函数

        在逻辑回归算法中,有函数f()=\frac{1}{1+e^{-x}},其中在实数域中,该函数包含的除法和求幂运算很难支持2PC和布尔运算,比之前工作用多项式去逼近函数不同的是,作者提出一个Friendly activation function,函数为f(u),f(u)图像如下图所示。

f(u)=\left\{\begin{array}{ll} 0, & \text { if } u<-\frac{1}{2} \\ u+\frac{1}{2}, & \text { if }-\frac{1}{2} \leq u \leq \frac{1}{2} \\ 1, & \text { if } u>\frac{1}{2} \end{array}\right.\textup{}              

 构造的灵感来源于:

(1)函数值应该收敛在0和1之间;(2)RELU函数

2.4 引入了面向秘密共享的向量化计算

线性回归下模型权重更新公式为\small w_{j}:=w_{j}-\alpha \frac{\partial C_{i}(\mathbf{w})}{\partial w_{j}},仅涉及加法和乘法。秘密分享形式下的加法在本地即可计算,而乘法需要借助Beavers Triple。但是元素级别的运算效率太低,这里优化为矩阵乘法C=A\cdot B,由2.1节可知C的Share为:\small \langle\mathbf{C}\rangle_{i}=-i \cdot \mathbf{E} \times \mathbf{F}+\langle\mathbf{A}\rangle_{i} \times \mathbf{F}+\mathbf{E} \times\langle\mathbf{B}\rangle_{i}+\langle\mathbf{Z}\rangle_{i},这样可以大大加快计算效率。

3. Q&R

3.1 为什么加法秘密共享是环上,shamir是在域上?

答:加法秘密分享只需要加减法就可以定义分享和恢复算法;shamir的恢复算法需要计算离散空间的除法,环中因为有些元素没有逆元,所以没法保证恢复算法能成功。域中元素都有逆元,可以计算除法。

3.2 隐私计算往往要求在有限域上运算,实际问题怎么去应用?

答:需要转化为将实际的运算转化到有限域的代数系统中。

4. Summary

        优化一个问题,可以从各个方面入手,有的对结果有直接影响,有的是间接影响;有的直接影响大,有的直接影响小。

Reference

1.论文阅读笔记:SecureML: A System for Scalable Privacy-Preserving Machine Learning - 知乎

2.为什么不可以直接在实数上进行秘密分享? - 知乎 (zhihu.com)

http://www.lryc.cn/news/20793.html

相关文章:

  • 【2023美赛】C题Wordle预测27页中文论文及Python代码详解
  • 【C++修行之路】STL——模拟实现string类
  • CorelDRAW2023最新版序列号使用教程
  • 【一天一门编程语言】Python 语言程序设计极简教程
  • 14、KL散度
  • TypeError: load() missing 1 required positional argument: ‘Loader‘解决方案
  • 【设计模式】 观察者模式介绍及C代码实现
  • 01-Maven基础-简介安装、基本使用(命令)、IDEA配置、(写jar,刷新自动下载)、依赖管理
  • 一、前端稳定性规约该如何制定
  • Docker(三)Docker网络
  • Js高级API
  • 团队:在人身上,你到底愿意花多大精力?
  • Linux-Poolkit提权
  • 【React全家桶】React Hooks
  • CLIP论文阅读
  • 华为OD机试真题Python实现【身高排序】真题+解题思路+代码(20222023)
  • Spring Cache的使用--快速上手篇
  • (三十八)MySQL是如何支持4种事务隔离级别的?Spring事务注解是如何设置的?
  • 【博学谷学习记录】大数据课程-学习第八周总结
  • go cobra初试
  • 【react全家桶】 事件处理
  • RabbitMQ交换机(Exchanges)
  • 2023年java初级面试题10道基础试水题
  • 烙铁使用方法
  • golang日期转换、日期增减计算、时间戳转换
  • Android 多种支付方式的优雅实现
  • 算法设计与分析期末考试复习(三)
  • ZCMU--1970: 潜伏者
  • containerd安装配置
  • 随机森林算法(Random Forest)R语言实现