当前位置: 首页 > news >正文

坦克世界WOT知识图谱三部曲之爬虫篇

文章目录

  • 关于坦克世界
  • 1. 爬虫任务
  • 2. 获取坦克列表
  • 3. 获取坦克具体信息
  • 结束语

关于坦克世界

  《坦克世界》(World of Tanks, WOT)是我在本科期间玩过的一款战争网游,由Wargaming公司研发。2010年10月30日在俄罗斯首发,2011年4月12日在北美和欧洲推出,2011年3月15日在中国由空中网代理推出(2020年,国服由360代理)。游戏背景设定在二战时期,玩家会扮演1930到1960年代的战车进行对战,要求战略和合作性,游戏中的战车根据历史高度还原。

  坦克世界官网:https://wotgame.cn/
  坦克世界坦克百科:https://wotgame.cn/zh-cn/tankopedia/#wot&w_m=tanks

在这里插入图片描述

1. 爬虫任务

在这里插入图片描述
  当前的WOT有五种坦克类型,11个系别。我们要构建一个关于坦克百科的知识图谱,接下来就要通过爬虫来获取所有坦克的详细信息,比如坦克的等级、火力、机动性、防护能力、侦察能力等等。以当前的八级霸主中国重型坦克BZ-176为例,坦克的详细信息如下:

在这里插入图片描述
在这里插入图片描述

2. 获取坦克列表

在这里插入图片描述
  常规操作,F12+F5查看一下页面信息,定位到坦克列表的具体请求:

在这里插入图片描述
  是一个POST请求,返回的是一个JSON格式的数据,包含了该类型坦克的一些基本信息:

在这里插入图片描述
  POST请求参数如下:

在这里插入图片描述

  特别说明一下:构建该请求header时,Content-Length参数是必须的。

  代码实现:

# -*- coding: utf-8 -*-
# Author  : xiayouran
# Email   : youran.xia@foxmail.com
# Datetime: 2023/9/29 22:43
# Filename: spider_wot.py
import os
import time
import json
import requestsclass WOTSpider:def __init__(self):self.base_headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ''Chrome/117.0.0.0 Safari/537.36','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9',}self.post_headers = {'Accept': 'application/json, text/javascript, */*; q=0.01','Content-Length': '135','Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}self.from_data = {'filter[nation]': '','filter[type]': 'lightTank','filter[role]': '','filter[tier]': '','filter[language]': 'zh-cn','filter[premium]': '0,1'}self.tank_list_url = 'https://wotgame.cn/wotpbe/tankopedia/api/vehicles/by_filters/'self.tank_label = ['lightTank', 'mediumTank', 'heavyTank', 'AT-SPG', 'SPG']self.tanks = {}def parser_tanklist_html(self, html_text):json_data = json.loads(html_text)for data in json_data['data']['data']:self.tanks[data[0] + '_' + data[4]] = {'tank_nation': data[0],'tank_type': data[1],'tank_rank': data[3],'tank_name': data[4],'tank_name_s': data[5],'tank_url': data[6],'tank_id': data[7]}def run(self):for label in self.tank_label:self.from_data['filter[type]'] = labelhtml_text = self.get_html(self.tank_list_url, method='POST', from_data=self.from_data)if not html_text:print('[{}] error'.format(label))continueself.parser_tanklist_html(html_text)time.sleep(3)self.save_json(os.path.join(self.data_path, 'tank_list.json'), self.tanks)if __name__ == '__main__':tank_spider = WOTSpider()tank_spider.run()

  上述代码只实现了一些重要的函数及变量声明,完整的代码可以从github上拉取:WOT

3. 获取坦克具体信息

  坦克具体信息的页面就是一个纯HTML页面了,一个GET请求就可以获得。当然啦,具体怎么分析的就不细说了,对爬虫技术感兴趣的同学们可以找找资料,这里就只说一下抓取流程。
  先分析GET请求:https://wotgame.cn/zh-cn/tankopedia/60209-Ch47_BZ_176/,可以分成三部分:
  Part 1:基本的url请求:https://wotgame.cn/zh-cn/tankopedia
  Part 2:坦克的idBZ-176坦克的id60209,每个坦克都是唯一的,这个参数通过上一个步骤的POST请求可以获取到;
  Part 3:坦克的名称:Ch47_BZ_176,这个参数也可以通过上一个步骤的POST请求可以获取到。
  这样就可以为每个坦克构造一个对应的url了,只需解析该url对应的界面即可。解析的时候我分成了两部分,先对坦克的基本信息进行解析,比如坦克系别、等级及价格等等,由BeautifulSoup库实现,坦克的具体信息,比如火力、机动、防护及侦察能力,这些信息是由JavaScript代码动态请求得到的,这里为了简便没有分析具体的js代码,而是先使用selenium库进行网页渲染,然后再使用BeautifulSoup库进行解析。这里不再细说,下面给出页面解析的代码:

# -*- coding: utf-8 -*-
# Author  : xiayouran
# Email   : youran.xia@foxmail.com
# Datetime: 2023/9/29 22:43
# Filename: spider_wot.py
import requests
from tqdm import tqdm
from bs4 import BeautifulSoup, Tag
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWaitclass WOTSpider:def __init__(self):passdef is_span_with_value(self, driver):try:element = driver.find_element(By.XPATH, "//span[@data-bind=\"text: ttc().getFormattedBestParam('maxHealth', 'gt')\"]")data = element.text.strip()if data:return Trueexcept:return Falsedef get_html_driver(self, url):self.driver.get(url)self.wait.until(self.is_span_with_value)page_source = self.driver.page_sourcereturn page_sourcedef parser_tankinfo_html(self, html_text):tank_info = copy.deepcopy(self.tank_info)soup = BeautifulSoup(html_text, 'lxml')# tank_name = soup.find(name='h1', attrs={'class': 'garage_title garage_title__inline js-tank-title'}).strip()tank_statistic = soup.find_all(name='div', attrs={'class': 'tank-statistic_item'})for ts in tank_statistic:ts_text = [t for t in ts.get_text().split('\n') if t]if len(ts_text) == 5:tank_info['价格'] = {'银币': ts_text[-3],'经验': ts_text[-1]}else:tank_info[ts_text[0]] = ts_text[-1]tank_property1 = soup.find(name='p', attrs='garage_objection')tank_property2 = soup.find(name='p', attrs='garage_objection garage_objection__collector')if tank_property1:tank_info['性质'] = tank_property1.textelif tank_property2:tank_info['性质'] = tank_property2.textelse:tank_info['性质'] = '银币坦克'tank_desc_tag = soup.find(name='p', attrs='tank-description_notification')if tank_desc_tag:tank_info['历史背景'] = tank_desc_tag.texttank_parameter = soup.find_all(name='div', attrs={'class': 'specification_block'})for tp_tag in tank_parameter:param_text = tp_tag.find_next(name='h2', attrs={'class': 'specification_title specification_title__sub'}).get_text()# spec_param = tp_tag.find_all_next(name='div', attrs={'class': 'specification_item'})spec_param = [tag for tag in tp_tag.contents if isinstance(tag, Tag) and tag.attrs['class'] == ['specification_item']]spec_info = {}for tp in spec_param:tp_text = [t for t in tp.get_text().replace(' ', '').split('\n') if t]if not tp_text or not tp_text[0][0].isdigit():continuespec_info[tp_text[-1]] = ' '.join(tp_text[:-1])tank_info[param_text] = spec_inforeturn tank_infodef run(self):file_list = [os.path.basename(file)[:-5] for file in glob.glob(os.path.join(self.data_path, '*.json'))]for k, item in tqdm(self.tanks.items(), desc='Crawling'):file_name = k.replace('"', '').replace('“', '').replace('”', '').replace('/', '-').replace('\\', '').replace('*', '+')if file_name in file_list:continuetank_url = self.tank_url + str(item['tank_id']) + '-' + item['tank_url']html_text = self.get_html_driver(tank_url)# html_text = self.get_html(tank_url, method='GET')tank_info = self.parser_tankinfo_html(html_text)self.tanks[k].update(tank_info)self.save_json(os.path.join(self.data_path, '{}.json'.format(file_name)), self.tanks[k])time.sleep(1.5)self.save_json(os.path.join(self.data_path, 'tank_list_detail.json'), self.tanks)if __name__ == '__main__':tank_spider = WOTSpider()tank_spider.run()

  大约半个小时即可获取全部的坦克信息,如下:

在这里插入图片描述

  Selenium 库依赖chromedriver,需要根据自己的Chrome浏览器版本下载合适的版本,chromedriver的官方下载地址为:https://chromedriver.chromium.org/downloads/version-selection

结束语

  本篇的完整代码及爬取的结果已经同步到仓库中,感兴趣的话可以拉取一下,下一篇文章就基于当前获取到的坦克信息来构造一个关于坦克百科的知识图谱。

开源代码仓库


  如果喜欢的话记得给我的GitHub仓库WOT点个Star哦!ヾ(≧∇≦*)ヾ


  公众号已开通:夏小悠,关注以获取更多关于Python文章、AI领域最新技术、LLM大模型相关论文及内部PPT等资料^_^

http://www.lryc.cn/news/182970.html

相关文章:

  • Idea上传项目到gitlab并创建使用分支
  • 3D孪生场景搭建:参数化模型
  • 最短路径专题6 最短路径-多路径
  • 【Linux】Linux常用命令—文件管理(上)
  • 【Python】基于OpenCV人脸追踪、手势识别控制的求生之路FPS游戏操作
  • 约束优化算法(optimtool.constrain)
  • 如何查看postgresql中的数据库大小?
  • 使用python-opencv检测图片中的人像
  • 项目进展(三)-电机驱动起来了,发现了很多关键点,也遇到了一些低级错误,
  • 目标检测算法改进系列之Backbone替换为RepViT
  • 学习 Kubernetes的难点和安排
  • 【MATLAB源码-第42期】基于matlab的人民币面额识别系统(GUI)。
  • 【软件测试】软件测试的基础概念
  • Docker-mysql,redis安装
  • 五种I/O模型
  • 用nativescript开发ios程序常用命令?
  • 6.Tensors For Beginners-What are Convector
  • Linux多线程网络通信
  • 矩阵的c++实现(2)
  • RPC 框架之Thrift入门(一)
  • 【C++】运算符重载 ⑥ ( 一元运算符重载 | 后置运算符重载 | 前置运算符重载 与 后置运算符重载 的区别 | 后置运算符重载添加 int 占位参数 )
  • 538. 把二叉搜索树转换为累加树
  • java8日期时间工具类
  • 算法-动态规划/trie树-单词拆分
  • React框架核心原理
  • python-pytorch 利用pytorch对堆叠自编码器进行训练和验证
  • 制作 3 档可调灯程序编写
  • 源码分享-M3U8数据流ts的AES-128解密并合并---GoLang实现
  • CSDN Q: “这段代码算是在STC89C52RC51单片机上完成PWM呼吸灯了吗?“
  • Linux系统编程系列之线程池