当前位置: 首页 > news >正文

leetCode 123.买卖股票的最佳时机 III 动态规划 + 状态压缩

123. 买卖股票的最佳时机 III - 力扣(LeetCode)

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 3:

输入:prices = [7,6,4,3,1] 
输出:0 
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:

输入:prices = [1]
输出:0

>>思路和分析

这道题目相对leetCode 121.买卖股票的最佳时机 和 leetCode 122.买卖股票的最佳时机 II难了不少关键在于至多买卖几次,意味着可以买卖一次,可以买卖两次,也可以不买卖。

>>动规五部曲

1.确定dp数组以及下标的含义

一天 一共有 5 个 状态 ,dp[i][j] 中 i 表示 第 i 天,j 为[0 - 4] 五个状态,dp[i][j]表示第 i 天状态 j所剩最大现金

  • 0.没有操作(其实也可以不设置这个状态)
  • 1.第一次持有股票
  • 2.第一次不持有股票
  • 3.第二次持有股票
  • 4.第二次不持有股票

"持有" : 不代表就是当天"买入"!可能昨天就买入了,今天保持有的状态

2.确定递推公式

3.dp数组初始化

dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;

4.确定遍历顺序

递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值

5.举例推导dp数组

以输入[1,2,3,4,5]为例

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {// dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[len - 1][4];}
};

其实可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如在 leetCode 121.买卖股票的最佳时机和 leetCode 122.买卖股票的最佳时机 II也没有设置这一状态是一样的。 

  • 时间复杂度:O(n)
  • 空间复杂度:O(n × 4)

>>状态压缩

摘取自代码随想录代码随想录 (programmercarl.com)

  • dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。
  • 如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。
// 状态压缩
class Solution {
public:int maxProfit(vector<int>& prices) { if(prices.size() == 0) return 0;   int len = prices.size();vector<int> dp(5,0);dp[1] = -prices[0];dp[3] = -prices[0];for(int i=1;i<len;i++) {dp[1] = max(dp[1],dp[0] - prices[i]);dp[2] = max(dp[2],dp[1] + prices[i]);dp[3] = max(dp[3],dp[2] - prices[i]);dp[4] = max(dp[4],dp[3] + prices[i]);}return dp[4];}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

参考和推荐文章、视频

代码随想录 (programmercarl.com)

动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III_哔哩哔哩_bilibili

来自代码随想录课堂截图:

http://www.lryc.cn/news/179114.html

相关文章:

  • JavaScript计算两个时间相差多少个小时的封装函数
  • Qt 画自定义饼图统计的例子
  • 【数据结构】链表与LinkedList
  • Flink RoaringBitmap去重
  • Elasticsearch—(MacOs)
  • 插入排序与希尔排序
  • C# OpenCvSharp 基于直线检测的文本图像倾斜校正
  • “智慧时代的引领者:探索人工智能的无限可能性“
  • PMSM——转子位置估算基于QPLL
  • Android Studio之Gradle和Gradle插件的区别
  • DataExcel控件读取和保存excel xlsx 格式文件
  • 【JavaEE】CAS(Compare And Swap)操作
  • 第三章:最新版零基础学习 PYTHON 教程(第三节 - Python 运算符—Python 中的关系运算符)
  • 【GDB】使用 GDB 自动画红黑树
  • 使用Vue3+elementPlus的Tree组件实现一个拖拽文件夹管理
  • 小谈设计模式(7)—装饰模式
  • nginx 多层代理 + k8s ingress 后端服务获取客户真实ip 配置
  • 6种最常用的3D点云语义分割AI模型对比
  • UG NX二次开发(C#)-获取UI中选择对象的handle值
  • win10,WSL的Ubuntu配python3.7手记
  • 02-Zookeeper实战
  • 【C语言深入理解指针(1)】
  • 模拟实现简单的通讯录
  • rabbitMQ死信队列快速编写记录
  • 数位dp,338. 计数问题
  • 如何解决git clone http/https仓库失败(403错误)
  • 华为云云耀云服务器L实例评测 | 实例评测使用之硬件性能评测:华为云云耀云服务器下的硬件运行评测
  • Elasticsearch:使用 Elasticsearch 进行语义搜索
  • JVM的主要组成及其作用
  • 会议AISTATS(Artificial Intelligence and Statistics) Latex模板参考文献引用问题