当前位置: 首页 > news >正文

2023年国赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录

  • 0 赛题思路
    • 1 问题要求
    • 2 假设约定
    • 3 符号约定
    • 4 建立模型
    • 5 模型求解
    • 6 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 问题要求

现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
在这里插入图片描述
要求:

  • (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
  • (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
  • (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
  • (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?

(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)

2 假设约定

  • 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
  • 2 室内不受外界光源影响;
  • 3 教室高度为2.5米;
  • 4 不考虑光的反射;
  • 5 线光源发光是均匀的.

3 符号约定

在这里插入图片描述

4 建立模型

在这里插入图片描述
在这里插入图片描述

5 模型求解

在这里插入图片描述
在这里插入图片描述

6 实现代码

matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了

clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),'  ','y21=',num2str(y21),'  ','x22=',num2str(x22),'  ','y22=',num2str(y22),'  ','x23=',num2str(x23),'  ','y23=',num2str(y23),'  ','x24=',num2str(x24),'  ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1,  x12=x2,y12=y2,  x13=x3,y13=y3,  x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
li

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

http://www.lryc.cn/news/124104.html

相关文章:

  • volte端到端问题分析(一)
  • 微信小程序(原生)搜索功能实现
  • Android AOSP源码编译——AOSP整编(二)
  • 铁是地球科学争论的核心
  • TX Text Control .NET Server for ASP.NET Crack
  • 工作纪实36-ES跨集群迁移
  • 【MFC】11.MFC文档和单文档架构-笔记
  • 2023年“研究生科研素养提升”系列公益讲座在线测评题目与参考答案
  • MySQL8.xx一主两从复制安装与配置
  • 深度学习优化器
  • 由浅入深C系列五:使用libcurl进行基于http get/post模式的C语言交互应用开发
  • 高效实用小工具之Everything
  • 【Unity每日一记】关于物体(敌方)检测—(向量点乘相关)
  • Elasticsearch-查询
  • 首发 | FOSS分布式全闪对象存储系统白皮书
  • Java反射获取所有Controller和RestController类的方法
  • 设计模式--策略模式
  • VSCode使用SSH无密码连接Ubuntu
  • 通过版本号控制强制刷新浏览器或清空浏览器缓存
  • Redis系列(二):深入解读Redis的两种持久化方式
  • CNN之图像识别
  • nvcc not found
  • pdf怎么转换成jpg图片?这几个转换方法了解一下
  • 六轴机械臂码垛货物堆叠仿真
  • text-decoration 使用
  • linux shell快速入门
  • 【Spring源码】小白速通解析Spring源码,从0到1,持续更新!
  • Unity 鼠标实现对物体的移动、缩放、旋转
  • 67Class 的基本语法
  • 企业数字化转型:无形资产占比测算(2007-2021年)