第九篇-自我任务数据准备
格式化自我意识数据用于ChatGLM微调
准备数据源
https://github.com/hiyouga/ChatGLM-Efficient-Tuning
cd data
self_cognition.json
代码self_process.py
#!/usr/bin/python
# -*- coding: UTF-8 -*- # 读取self_cognition自我认知解析并写入转换新文件import json# 读取self_cognition文件中的JSON列表
with open('self_cognition.json', 'r', encoding='utf-8') as f:data = json.load(f)# 处理content和summary
def process_data(item):# 将instruction对应到content,output对应到summaryitem['content'] = item['instruction'].replace(' ', '')item['summary'] = item['output'].replace(' <NAME>', 'AI小木').replace('<AUTHOR>', '小吕').replace(' ', '')return item# 将处理后的数据写入B文件
with open('self_cognition/train.json', 'w', encoding='utf-8') as f:for item in data:process_item = process_data(item)# 将一行JSON对象写入文件f.write('{"content":"'+process_item['content']+'","summary":"'+process_item['summary']+'"}')f.write('\n')
名称:AI小木
作者:小吕
可以自己替换
执行处理
python self_process.py
文件配置修改
我的train.json与dev.json一致,后期再处理吧
data/
├── dataset_info.json
└── self_cognition/
├── dev.json
└── train.json
接下来,我们修改 dataset_info.json,增加以下两列内容,从而使训练框架能够识别自定义数据集。
,
"self_cognition_train": {"file_name": "self_cognition/train.json","columns": {"prompt": "content","query": "","response": "summary","history": ""}
},
"self_cognition_dev": {"file_name": "self_cognition/dev.json","columns": {"prompt": "content","query": "","response": "summary","history": ""}
}