当前位置: 首页 > news >正文

使代码减半的5个Python装饰器

大家好,到目前为止,Python编程语言由于其语法简单,在机器学习和网络开发等各个领域的应用功能强大。除非绝对必要,装饰器一般很少出现在视野中,比如使用@staticmethod装饰器来表示类中的静态方法。装饰器能提供的大量强大的功能,同时它们可以提升代码的整洁度和可读性。本文将探讨Python包装器的概念,并介绍可以改善Python开发过程的五个示例。

Python包装器

Python包装器是添加到另一个函数中的函数,它可以在不直接更改源代码的情况下添加额外的功能或修改其行为。它们通常以装饰器的形式实现,装饰器是一种特殊的函数,它将另一个函数作为输入,并对其功能进行一些更改。

包装器函数在各种情况下都很有用:

  • 功能扩展:通过使用包装器封装函数,可以添加日志记录、性能测量或缓存等功能。

  • 代码重用性:可以将一个包装器函数甚至一个类应用于多个实体,这样就可以避免代码重复,并确保不同组件的行为保持一致。

  • 行为修改:可以拦截输入参数,例如,验证输入变量,而无需使用许多assert行。

五个相关示例

1 - 计时器

该包装器函数用于测量函数的执行时间,并打印已用时间,它对于剖析和优化代码非常有用。

import timedef timer(func):def wrapper(*args, **kwargs):# 启动计时器start_time = time.time()# 调用装饰函数result = func(*args, **kwargs)# 重新测量时间end_time = time.time()# 计算所耗时间并打印出来execution_time = end_time - start_timeprint(f"Execution time: {execution_time} seconds")# 返回装饰函数的执行结果return result# 返回包装函数的引用return wrapper

要在Python中创建装饰器,需要定义一个名为timer的函数,它需要一个名为func的参数来表示它是一个装饰器函数。在timer函数中,本文定义了另一个名为wrapper的函数,它接收通常传递给要装饰的函数的参数。

wrapper函数中,使用提供的参数调用所需的函数。可以使用以下代码完成此操作:result = func(*args, **kwargs)。最后,wrapper函数返回装饰函数的执行结果。装饰器函数应返回对刚刚创建的包装函数的引用。要使用装饰器,可以使用@符号将其应用于所需的函数。

@timer
def train_model():print("Starting the model training function...")# 暂停程序5秒钟,模拟函数执行过程time.sleep(5) print("Model training completed!")train_model() 

输出:

Starting the model training function…

Model Training completed!

Execution time: 5.006425619125366 seconds

2 - 调试器

还可以创建一个有用的包装函数,通过打印每个函数的输入和输出来方便调试。通过这种方法,可以深入了解各种函数的执行流程,而不必在应用程序中使用大量打印语句。

def debug(func):def wrapper(*args, **kwargs):# 打印函数名和参数print(f"Calling {func.__name__} with args: {args} kwargs: {kwargs}")# 调用函数result = func(*args, **kwargs)# 打印结果print(f"{func.__name__} returned: {result}")return resultreturn wrapper

可以使用__name__参数获取被调用函数的名称,然后使用argskwargsparameters打印传递给函数的内容。

@debug
def add_numbers(x, y):return x + y
add_numbers(7, y=5,)  # 输出:Calling add_numbers with args: (7) kwargs: {'y': 5} \n add_numbers return

3 - 异常处理器

异常处理器包装函数(exception_handler)将捕捉divide函数中出现的任何异常,并进行相应处理。

可以根据用户的要求定制封装函数中的异常处理方法,例如记录异常或执行额外的错误处理步骤。

def exception_handler(func):def wrapper(*args, **kwargs):try:return func(*args, **kwargs)except Exception as e:# 处理异常print(f"An exception occurred: {str(e)}")# 可选择执行额外的错误处理或日志记录# 必要时重设异常return wrapper

这对于简化代码,建立统一的异常处理和错误记录程序非常有用。

@exception_handler
def divide(x, y):result = x / yreturn result
divide(10, 0)  # 输出:An exception occurred: division by zero

4 - 输入验证器

该封装函数根据指定条件或数据类型验证函数的输入参数,它可用于确保输入数据的正确性和一致性。

另一种方法是在验证输入数据的函数中创建无数的assert语句。

要在装饰器中添加验证功能,需要将装饰器函数包装在另一个函数中,该函数接受一个或多个验证函数作为参数,这些验证函数负责检查输入值是否符合某些标准或条件。

现在,validate_input函数本身就是一个装饰器,在wrapper函数中,输入和关键字参数将根据所提供的验证函数进行检查。如果有任何参数未通过验证,就会引发一个ValueError,并在提示信息中说明该参数无效。

def validate_input(*validations):def decorator(func):def wrapper(*args, **kwargs):for i, val in enumerate(args):if i < len(validations):if not validations[i](val):raise ValueError(f"Invalid argument: {val}")for key, val in kwargs.items():if key in validations[len(args):]:if not validations[len(args):][key](val):raise ValueError(f"Invalid argument: {key}={val}")return func(*args, **kwargs)return wrapperreturn decorator

要调用经过验证的输入,需要定义验证函数。例如,可以使用两个验证函数。第一个函数(lambda x: x > 0)检查参数x是否大于0,第二个函数(lambda y: isinstance(y,str))检查参数y是否为字符串类型。

重要的是要确保验证函数的顺序与它们要验证的参数的顺序一致。

@validate_input(lambda x: x > 0, lambda y: isinstance(y, str))
def divide_and_print(x, message):print(message)return 1 / xdivide_and_print(5, "Hello!")  # 输出:Hello! 1.0

5 - 重试

该包装函数会重试执行指定次数的函数,重试之间会有延迟。在处理偶尔会因临时问题而失败的网络或API调用时,它非常有用。

为了实现这一点,可以为装饰器定义另一个封装函数,与之前的示例类似。不过,这一次不再将验证函数作为输入变量,而是传递特定参数,如max_attemps和变量delay

当调用装饰函数时,该wrapper函数将会被调用,它会记录尝试的次数(从0开始),并进入while循环。循环会尝试执行装饰函数,如果成功,会立即返回结果。但是如果出现异常,则会递增尝试计数器,并打印错误信息,说明尝试次数和出现的具体异常。然后,它会使用time.sleep等待指定的延迟时间,然后再次尝试执行函数。

import timedef retry(max_attempts, delay=1):def decorator(func):def wrapper(*args, **kwargs):attempts = 0while attempts < max_attempts:try:return func(*args, **kwargs)except Exception as e:attempts += 1print(f"Attempt {attempts} failed: {e}")time.sleep(delay)print(f"Function failed after {max_attempts} attempts")return wrapperreturn decorator

为了调用函数,可以指定最大尝试次数和每次调用函数之间的持续时间(以秒为单位)。

@retry(max_attempts=3, delay=2)
def fetch_data(url):print("Fetching the data..")# 引发超时错误,模拟服务器不响应。raise TimeoutError("Server is not responding.")
fetch_data("https://example.com/data")  # 重试3次,每次重试之间有2秒钟的延迟

结论

Python包装器是可以提升Python编程体验的强大工具。通过使用包装器,可以简化复杂的任务,提高代码的可读性,并提高工作效率。本文探讨了Python包装器的五个示例:

  • 计时器包装器

  • 调试器包装器

  • 异常处理器包装器

  • 输入验证器包装器

  • 函数重试包装器

将这些包装器融入到项目中,将帮助编写出更简洁、更高效的Python代码,并将编程技巧提升到一个新的水平。

http://www.lryc.cn/news/105890.html

相关文章:

  • 线程池的线程回收问题
  • 盘点那些不想骑车的原因和借口。
  • 【深度学习Week3】ResNet+ResNeXt
  • Visual Studio 2022的MFC框架全面理解
  • C# 消息队列 (MSMQ) 进程之间的通信
  • 算法练习(4):牛客在线编程05 哈希
  • 数字信号处理——频谱分析
  • [软件工程] 架构映射战略设计方案模板
  • Springboot MongoDB 事务
  • SAP自建表日志
  • ansible-kubeadm在线安装单masterk8s v1.19-v1.20版本
  • mongodb docker 及常用命令
  • 最新版本mac版Idea 激活Jerbel实现热部署
  • 基于Ubuntu22.04部署bcache模式ceph
  • 根据URL批量下载文件并压缩成zip文件
  • 机器学习笔记之优化算法(六)线搜索方法(步长角度;非精确搜索;Glodstein Condition)
  • Ant Design Pro 封装网络请求
  • 命令模式——请求发送者与接收者解耦
  • css 利用模糊属性 制作水滴
  • 怎么才能提升自己工作能力?
  • Android Framework 之 Zygote
  • 二叉树的中序遍历 LeetCode热题100
  • IOS + Appium自动化教程
  • 100个精选Python实战项目案例,在线无偿分享
  • JSON语法
  • PostMan+Jmeter+QTP工具介绍及安装
  • 2023电赛E题视觉部分
  • 算法工程师岗位面试必备,讲透深度学习面试题,详解人工智能生成式任务与AI大模型面试题
  • JVM基础篇-虚拟机栈
  • KepwareEX配置API REST接口