当前位置: 首页 > news >正文

R语言广义可加模型在空气环境污染方面的应用(1)

粉丝私信我希望复制一篇文章的图片,图片来源于文章:Wu C, Yan Y, Chen X, Gong J, Guo Y, Zhao Y, Yang N, Dai J, Zhang F, Xiang H. Short-term exposure to ambient air pollution and type 2 diabetes mortality: A population-based time series study. Environ Pollut. 2021 Nov 15;289:117886. doi: 10.1016/j.envpol.2021.117886. Epub 2021 Jul 31. PMID: 34371265.
在这里插入图片描述
文章有3个图片,是一个关于空气污染和糖尿病发病率的图片,图形如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
文章内容比较多,我打算通过两节内容来演示,今天我们来演示一下文章1-2的图片生成,我这里没有环境污染和糖尿病的数据,使用的既往的美国芝加哥1987年至 2000年大气污染与死亡数据(公众号回复:芝加哥2,可以获得数据)做实例分析,我们先导入需要的R包和数据看看

library(tsModel)
library(ggplot2)
library(nlme)
library(mgcv)
bc<-read.csv("E:/r/test/chicago.csv",sep=',',header=TRUE)

在这里插入图片描述
我们先来看看数据的构成,death:死亡人数 (per day),pm10:大气污染物pm10的中位数值,pm25median,o3median:二氧化硫的中位数值,time:天数,这里就是我们的时间,tmpd:华氏温度,date:日期
在文章中,作者在图1分析了多个指标和糖尿病的关联,我这里先绘制这个时间相关的折线图
在这里插入图片描述
先把日期变量转换一下格式

bc$date<-as.Date(bc$date)

我们先绘制一个pm10的图作者是以间隔1年为坐标,我这里数据年份多一点,这里以2年为间隔

ggplot(bc, aes(x =date, y = pm10,color="red"))+geom_line(size=1)+scale_x_date(date_labels = "%Y",date_breaks = "2 year")+xlab("Year")+ ylab("pm10")+theme_bw()+theme( axis.title=element_text(size=10,face="plain",color="black"),axis.text = element_text(size=10,face="plain",color="black"),legend.position = c(0.8,0.8),legend.background = element_blank())

在这里插入图片描述
这样单变量的时间折线图就绘制好了,多个变量就把它组合起来,先把长数据转成宽数据,这里收集了"pm10",“o3”,"rhum"这3个指标rhum我也不知道是什么,

library(reshape2)
dat<-melt(bc,id=c("date","time"),measure.vars = (c("pm10","o3","rhum")),variable.name = "measure",value.name = "value")

在这里插入图片描述
转换好以后就可以绘图了

ggplot(dat, aes(x =date, y = value,color="red"))+geom_line(aes(group=measure,col=measure),size=1)+scale_x_date(date_labels = "%Y",date_breaks = "2 year")+facet_wrap(~measure)+xlab("Year")+ ylab("pm10")+theme_bw()+theme( axis.title=element_text(size=10,face="plain",color="black"),axis.text = element_text(size=10,face="plain",color="black"),legend.position = c(0.8,0.8),legend.background = element_blank())

在这里插入图片描述
稍微调整一下就生成好图片了
在这里插入图片描述
这样时间相关折线图就绘制好了,接下来作者图2绘制了一个在不同年龄分层分析中,T2DM死亡率与污染物浓度增加10μg/m 3相关的95%CI变化百分比(%),
在这里插入图片描述
这其实就是个带误差和可信区间的折线图,数据是以年龄来分层,我这里没有分层变量,我自己生成一个fage变量,0表示低龄,1表示高龄

set.seed(1234)
bc$fage<-sample(0:1,size=5114,replace=TRUE)
bc$fage<-as.factor(bc$fage)

在文章中
我们先来生成一个pm10lag01变量,赋值为过去两天大气PM10浓度的移动均值,表示图中的lag01

pm10lag<-runMean(bc.f$pm10,0:i)###产生 pm10lag01变量,赋值为过去两天大气PM10浓度的移动均值

搞好变量后就可以建立模型了,文章中作者已经给出它的模型,以及模型的详细解释,我这里就直接上代码了,dow这里是星期几,作者转成了一个分类变量,就是周末和非周末,我这里就不弄了
在这里插入图片描述

fit1<-gam(death~pm10lag01+ns(temp,3)+ns(o3,3)+ns(date,7*14),family = quasipoisson(),data=bc) #GAM 模型拟合 
summary(fit1)

在这里插入图片描述
这部分的操作我在既往文章《R语言mgcv包时间序列分析在空气污染与健康领域的应用(1)》有介绍,有兴趣的可以自己看一下,我这里直接上代码了

b<-as.numeric(summary(fit1)$ coeff[2,1])#提取系数
se<-as.numeric(summary(fit1)$ coeff[2,2]) #提取标准误
ER<-(exp(b*10)-1)*100 ####计算 PM 10每升高 10μg /m 3 ,死亡的超额危险度ER
ERlp<-(exp((b-1.96*se)* 10)-1)*100 #计算95%CI
ERup<-(exp((b+1.96*se)* 10)-1)*100 #计算95%CI

这样我们我们就制作出了lag01的线段图数据,作者用了单日滞后模型和多日滞后模型,分别是lag0—lag7我这里制作多日滞后模型,制作8天需要写一个循环。
其实就是把前面的过程整合起来

for (i in 0:7) {dat<-NULLpm10lag<-runMean(bc$pm10,0:i)###产生 pm10lag01变量,赋值为过去两天大气PM10浓度的移动均值bc$pm10lag<-pm10lagfit<-gam(death~pm10lag+ns(temp,3)+ns(o3,3)+ns(date,7*14),family = quasipoisson(),data=bc) #GAM 模型拟合 b<-as.numeric(summary(fit)$coeff[2,1])#提取系数se<-as.numeric(summary(fit)$ coeff [2,2]) #提取标准误ER<-(exp(b*10)-1)*100 ####计算 PM 10每升高 10μg /m 3 ,死亡的超额危险度ERERlp<-(exp((b-1.96*se)* 10)-1)*100 #计算95%CIERup<-(exp((b+1.96*se)* 10)-1)*100 #计算95%CIlag<- paste0(i)d<-data.frame(lag=lag,ER=ER,se=se,ERlp=ERlp,ERup=ERup)dat<-rbind(dat,d)
}

最后的出dat就是lag0—lag7的数据

在这里插入图片描述
得出以后就可以绘图了

pd <- position_dodge(0.001)ggplot(dat, aes(x=lag, y=ER)) + geom_errorbar(aes(ymin=ERlp,ymax=ERup),width=.1,position=pd) +geom_line(position=pd) +geom_point(position=pd)

在这里插入图片描述
这样图就完成了,如果画分类怎么画呢,就是对数据取亚组就可以了,下面来演示一下,先把数据分成两个亚组

bc.m<-subset(bc,bc$fage==0)
bc.f<-subset(bc,bc$fage==1)

分好亚组后就可以得到两个数据,我们就可以像之前一样,分别对每个单组一样跑循环,最后生成两个数据dat1,dat2
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们需要把这两个图合并,生成一个绘图数据

datapolt<-rbind(dat1,dat2)

在这里插入图片描述
最后绘图

pd <- position_dodge(0.1)ggplot(datapolt, aes(x=lag, y=ER, colour=group)) + geom_errorbar(aes(ymin= ERlp, ymax= ERup), width=.1) +geom_line(position=pd) +geom_point(position=pd)

在这里插入图片描述
修饰一下

ggplot(datapolt, aes(x=lag, y=ER, colour=group)) + geom_errorbar(aes(ymin= ERlp, ymax= ERup), width=.1) +geom_line(position=pd) +geom_point(position=pd)+theme_bw()+theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+xlab("lag天数")+ylab("ER")+ggtitle("lag天数与ER关系")

在这里插入图片描述
如果不想要连线

ggplot(datapolt, aes(x=lag, y=ER, colour=group)) + geom_errorbar(aes(ymin= ERlp, ymax= ERup), width=.1) +geom_point(position=pd)+theme_bw()+theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+xlab("lag天数")+ylab("ER")+ggtitle("lag天数与ER关系")

在这里插入图片描述
这个分类变量是我自己生成的,绘制出图形肯定有点怪,但是方法就是这样了,如果想对多个指标进行分面,可以参照图一方法,我这里就不弄了,下节继续介绍下图的绘制
在这里插入图片描述
OK,本章结束觉得有用的话多多分享哟。
原创不易,需要文章数据和全部代码的朋友,请把本文章转发朋友圈集10个赞,截图发给我,嫌麻烦的给我打赏5元截图发给我也可以。

http://www.lryc.cn/news/9961.html

相关文章:

  • CSDN 编程竞赛二十九期题解
  • 基于STM32采用CS创世 SD NAND(贴片SD卡)完成FATFS文件系统移植与测试
  • K_A12_007 基于STM32等单片机驱动AS608光学指纹识别模块 OLED0.96显示
  • map和set介绍及其底层模拟实现
  • 实现一个比ant功能更丰富的Modal组件
  • 2023美赛F题思路数据代码分享
  • Flutter如何与Native(Android)进行交互
  • 数据库主从复制和读写分离
  • Java并发编程面试题——线程安全(原子性、可见性、有序性)
  • DialogFragment内存泄露问题能不能一次性改好
  • java学习--多线程
  • 90后阿里P7技术专家晒出工资单:狠补了这个,真香...
  • 2023美赛C题:Wordle筛选算法
  • SpringBoot 集成 Kafka
  • OpenCV 图像金字塔算子
  • 【自学Linux】Linux一切皆文件
  • CUDA C++扩展的详细描述
  • 为什么重写equals必须重写hashCode
  • < 每日小技巧:N个很棒的 Vue 开发技巧, 持续记录ing >
  • 数据结构与算法之二分查找分而治之思想
  • 训练自己的中文word2vec(词向量)--skip-gram方法
  • ubuntu系统环境配置和常用软件安装
  • 【1139. 最大的以 1 为边界的正方形】
  • windows11安装sqlserver2022报错
  • Python快速上手系列--日志模块--详解篇
  • 【THREE.JS学习(1)】绘制一个可以旋转、放缩的立方体
  • 数仓实战 - 滴滴出行
  • python虚拟环境与环境变量
  • BeautifulSoup文档4-详细方法 | 用什么方法对文档树进行搜索?
  • 初识Tkinter界面设计