当前位置: 首页 > news >正文

OpenCV 图像金字塔算子

        本文是OpenCV图像视觉入门之路的第14篇文章,本文详细的介绍了图像金字塔算子的各种操作,例如:高斯金字塔算子 、拉普拉斯金字塔算子等操作。

        高斯金字塔中的较高级别(低分辨率)是通过先用高斯核对图像进行卷积再删除偶数行和列,然后较高级别的每个像素由基础级别的5个像素的贡献与高斯权重形成,通过这样的操作M x N的图像变为M/2 x N/2图像,因此面积减少到原来的四分之一,我们称之为Octave,当我们的金字塔越靠上时这种模式就越继续。

    向下采样方法:1.对图像进行高斯内核卷积;2.将所有偶数行和列去除。 图像的较低级别(高分辨率)是通过较高级别(低分辨率)在每个维度上扩大为原来的两倍,新增的行和列(偶数行和列)以0填充,然后使用指定的滤波器进行卷积去估计丢失像素的近似值。

    向上采样方法:1.将图像在每个维度扩大到原来的两倍,以新增的行和列以0填充;2.使用原先同样的内核(x4)与方法后的图像卷积,获得新增像素的近似值。  在缩放过程中以及丢失了一些信息,如果想在缩放过程中减少信息的丢失,就需要用到拉普拉斯金字塔。

OpenCV 图像金字塔算子目录

1 高斯金字塔

2 拉普拉斯金字塔


1 高斯金字塔

高斯金字塔:向上采样法(放大)        cv.pyrUp(src)函数:其中只需要传入一个参数,代表图像资源,用于对图像做向上采样

高斯金字塔:向下采样法(缩小)        cv.pyrDown()函数:参数传递与cv.pyrUp()一致,用于对图像做向下采样,通常也可以做图像模糊化处理

import cv2
import numpy as np
from numpy import unicodeif __name__ == '__main__':img = cv2.imread('D:/Jupyter_Notebooks/0.jpg') #, cv2.IMREAD_GRAYSCALEcv2.imshow("img", img)print(img.shape)up = cv2.pyrUp(img)up2 = cv2.pyrUp(up)cv2.namedWindow("up", 0)cv2.imshow("up", up)print(up.shape)cv2.namedWindow("up2", 0)cv2.imshow("up2", up2)print(up2.shape)down = cv2.pyrDown(img)up_down = cv2.pyrDown(up)cv2.namedWindow("down", 0)cv2.imshow("down", down)print(down.shape)cv2.namedWindow("up_down", 0)cv2.imshow("up_down", up_down)print(up_down.shape)cv2.waitKey(0)cv2.destroyAllWindows()

import cv2
import numpy as np
from numpy import unicodeif __name__ == '__main__':img = cv2.imread('D:/Jupyter_Notebooks/0.jpg') #, cv2.IMREAD_GRAYSCALEup = cv2.pyrUp(img)up_down = cv2.pyrDown(up)cv2.imshow("up_down", up_down)cv2.imshow("up_downs", np.hstack((img, up_down)))up = cv2.pyrUp(img)up_down = cv2.pyrDown(up)cv2.imshow("img-up_down", img - up_down)cv2.waitKey(0)cv2.destroyAllWindows()

这段代码使用了 OpenCV 中的图像金字塔函数 cv2.pyrUp()cv2.pyrDown(),并在屏幕上显示了 img - up_down 的差异图像。

图像金字塔是一种常见的多分辨率图像处理技术,它可以将图像按照不同的尺度进行缩小或放大,从而得到一系列图像。cv2.pyrUp()cv2.pyrDown() 分别是向上采样和向下采样的函数,可以用来生成高斯金字塔和拉普拉斯金字塔。

在这段代码中,首先使用 cv2.pyrUp() 对原始图像 img 进行向上采样,得到一个更高分辨率的图像 up。然后使用 cv2.pyrDown()up 进行向下采样,得到一个分辨率与原始图像相同但内容可能有所不同的图像 up_down

最后,通过 cv2.imshow() 函数显示 img - up_down 的差异图像,即原始图像与经过向上-向下采样后的图像之间的差异。这样做可以帮助我们了解金字塔图像处理的效果,以及对图像内容的改变情况进行可视化分析。

2 拉普拉斯金字塔

1.左上角的图片为原始图片

2.对原始图像进行高斯平滑

3.执行一次下采样,图像变为原来的1/4

4.执行一次上采样,图像变为原图的大小

5.再次执行高斯模糊

6.用原图像减去高斯模糊后的图像,得到拉普拉斯图像

import cv2
import numpy as np
from numpy import unicodeif __name__ == '__main__':img = cv2.imread('D:/Jupyter_Notebooks/0.jpg') #, cv2.IMREAD_GRAYSCALEgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)down = cv2.pyrDown(img)dst = cv2.pyrUp(down)res = img - dstcv2.imshow("img", img)cv2.imshow("res", res)cv2.waitKey(0)cv2.destroyAllWindows()

 

http://www.lryc.cn/news/9944.html

相关文章:

  • 【自学Linux】Linux一切皆文件
  • CUDA C++扩展的详细描述
  • 为什么重写equals必须重写hashCode
  • < 每日小技巧:N个很棒的 Vue 开发技巧, 持续记录ing >
  • 数据结构与算法之二分查找分而治之思想
  • 训练自己的中文word2vec(词向量)--skip-gram方法
  • ubuntu系统环境配置和常用软件安装
  • 【1139. 最大的以 1 为边界的正方形】
  • windows11安装sqlserver2022报错
  • Python快速上手系列--日志模块--详解篇
  • 【THREE.JS学习(1)】绘制一个可以旋转、放缩的立方体
  • 数仓实战 - 滴滴出行
  • python虚拟环境与环境变量
  • BeautifulSoup文档4-详细方法 | 用什么方法对文档树进行搜索?
  • 初识Tkinter界面设计
  • 软件测试面试题中的sql题目你会做吗?
  • VS实用调试技巧
  • 通俗易懂理解三次握手、四次挥手(TCP)
  • 1.1 什么是并发
  • 万字讲解你写的代码是如何跑起来的?
  • 034.Solidity入门——21不可变量
  • Vulnhub 渗透练习(四)—— Acid
  • C++ 在线工具
  • 使用MMDetection进行目标检测、实例和全景分割
  • 使用ThreadLocal实现当前登录信息的存取
  • 高通平台开发系列讲解(Android篇)AudioTrack音频流数据传输
  • BUUCTF-firmware1
  • 【C++之容器篇】二叉搜索树的理论与使用
  • 爬虫神级解析工具之XPath:用法详解及实战
  • Markdown编辑器