当前位置: 首页 > news >正文

区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型

区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型

目录

    • 区间预测 | MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3
4

基本介绍

1.Matlab实现基于QRF随机森林分位数回归时间序列区间预测模型;
2.基于随机森林回归(QRF)分位数时间序列区间预测,Matlab代码,单变量输入模型,data为数据集(功率数据集),QRFTS为主程序,其余为函数文件,无需运行;
3.评价指标包括:R2、MAE、MAPE、MSE和区间覆盖率和区间平均宽度百分比等,代码质量极高,方便学习和替换数据;

随机森林分位数回归是一种基于随机森林过程的学习方法,用于对时间序列进行预测。在时间序列区间预测中,RF可以用于预测一系列未来时间点的分位数,从而提供关于未来趋势的一些信息。具体来说,RF可以用于估计某个时间点的观测值在给定分位数水平下的概率分布。这个分布可以用来计算区间预测。RF的预测结果可以提供一些关于未来时间序列的不确定性信息,这对于决策者和风险管理者来说非常有用。在应用 RF进行时间序列区间预测时,需要首先选择合适的高斯过程模型,然后基于历史数据进行参数估计和模型训练。一旦模型训练完成,就可以用它来对时间序列进行预测和区间估计。需要注意的是,RF是一种复杂的学习方法,需要一定的数学和计算机技能才能进行有效的应用。此外,预测结果也受到历史数据的限制,因此在进行时间序列区间预测时需要谨慎选择样本数据,并且需要不断更新模型以反映新的数据和趋势。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;

  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型

  • 完整程序和数据下载方式3(订阅《RF随机森林》专栏,数据订阅后私信我获取):MATLAB实现基于QRF随机森林分位数回归时间序列区间预测模型

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  模型创建
alpha = 0.10;
net = fitrgp(p_train, t_train);%%  仿真测试%%  数据反归一化
L_sim1 = mapminmax('reverse', l_sim1, ps_output);
L_sim2 = mapminmax('reverse', l_sim2, ps_output);T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

http://www.lryc.cn/news/95220.html

相关文章:

  • .NET网络编程——TCP通信
  • 【Python机器学习】实验01 Numpy以及可视化回顾
  • vue3-组件中的变化
  • 认识主被动无人机遥感数据、预处理无人机遥感数据、定量估算农林植被关键性状、期刊论文插图精细制作与Appdesigner应用开发
  • 数学建模的六个步骤
  • 【计算机组成原理】24王道考研笔记——第二章 数据的表示和运算
  • JQ-6 Bootstrap入门到实战;Bootstrap的(优缺点、安装、响应式容器原理、网格系统、响应式工具类、Bootstrap组件);小项目实践
  • 如何用3D格式转换工具HOOPS Exchange读取颜色和材料信息?
  • [Ubuntu 22.04] 安装docker,并设置镜像加速
  • 如何使用GPT作为SQL查询引擎的自然语言
  • Servlet3.0上传文件
  • 【ARM Cache 系列文章 6 番外篇 – MMU, MPU, SMMU, PMU 差异与关系】
  • NetSuite ERP顾问的进阶之路
  • js 新浏览器打开页面
  • jmeter软件测试实验(附源码以及配置)
  • ZooKeeper原理剖析
  • 【算组合数】CF1833 F
  • Attention详解(自用)
  • pptx转pdf工具类
  • 2023华为OD统一考试(B卷)题库清单(持续收录中)以及考点说明
  • 论文笔记--Won’t Get Fooled Again: Answering Questions with False Premises
  • 【Django】include app_name和namespace的区别
  • (黑客)自学笔记
  • 【期末课程设计】学生成绩管理系统
  • 【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation
  • ES6:基础使用,积累
  • Android端上传文件到Spring Boot后端
  • 使用GGML和LangChain在CPU上运行量化的llama2
  • 微服务基础理论
  • 《向量数据库指南》:向量数据库Pinecone管理数据教程