当前位置: 首页 > news >正文

【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 完备集合经验模态分解原理

1.2 变分 模 态 分 解

1.3 GRU

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

1.1 完备集合经验模态分解原理

早期的 EMD 方法具有较强的自适应性,能够有效地分解时间序列;但是,算法在运算过程中

容易出现模态混叠现象。EEMD 分解方法的思想是:在原始信号中加入白噪声[16],使极值点分布更均衡;最终分量在EMD 的基础上进行集成平均而得。但是,这种方法具有计算量大且重构时残留噪音大的缺陷。CEEMDAN 是 EEMD 的改进算法。该算法通过添加有限次数的自适应白噪声,解决了集合平均次数限制下的重构误差较大的问题。

1.2 变分 模 态 分 解

变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量

混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过

程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。

1.3 GRU

循环神经网络(Recurrent neural network,RNN)是经典的神经网络之一。由于 RNN 隐藏层

在不同样本序列的同一个神经元之间存在记忆传递,因此 RNN 在处理时间序列的线性回归问题具有优势:即,可以将前一刻神经元受到的影响输送到下一次学习中。但是,传统的 RNN 在进行反向传播时,如果输入数据的序列比较长,就会出现梯度消失、梯度爆炸等问题。

长短期记忆网络(Long short term memory,LSTM)和 GRU 的优势,在于其通过“门”结构极大地避免梯度消失问题,可以有效地分析长期依赖关系。

LSTM 包含 3 个门结构:遗忘门,输入门、输出门[21]。GRU 在 LSTM 的基础上减少了单元中门的个数,化简了单元复杂度,因此其运行效果要好于 LSTM。GRU 是由更新门和重置门构成,其内部结构如图 1 所示。

📚2 运行结果

 

部分代码:

# 7.Predict Co-IMF0 by matrix-input GRU
time0 = time.time()
df_vmd_co_imf0['sum'] = df_integrate_result['co-imf0']
co_imf0_predict_raw, co_imf0_gru_evaluation, co_imf0_train_loss = GRU_predict(df_vmd_co_imf0)
print('======Co-IMF0 Predicting Finished======\n', co_imf0_gru_evaluation)
time1 = time.time()
print('Running time: %.3fs'%(time1-time0))
co_imf0_predict_raw.plot(title='Co-IMF0 Predicting Result')
co_imf0_train_loss.plot(title='Co-IMF0 Training Loss')# 8.Predict Co-IMF1 and Co-IMF2 by vector-input GRU
co_imf1_predict_raw, co_imf1_gru_evaluation, co_imf1_train_loss = GRU_predict(df_integrate_result['co-imf1'])
print('======Co-IMF1 Predicting Finished======\n', co_imf1_gru_evaluation)
time2 = time.time()
print('Running time: %.3fs'%(time2-time1))
co_imf1_predict_raw.plot(title='Co-IMF1 Predicting Result')
co_imf1_train_loss.plot(title='Co-IMF1 Training Loss')co_imf2_predict_raw, co_imf2_gru_evaluation, co_imf2_train_loss = GRU_predict(df_integrate_result['co-imf2'])
print('======Co-IMF2 Predicting Finished======\n', co_imf2_gru_evaluation)
time3 = time.time()
print('Running time: %.3fs'%(time3-time2))
co_imf2_predict_raw.plot(title='Co-IMF2 Predicting Result')
co_imf2_train_loss.plot(title='Co-IMF2 Training Loss')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]金子皓,向玲,李林春,胡爱军.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(01):9-16.

[2]蒋富康,陆金桂,刘明昊,丰宇.基于CEEMDAN和CNN-LSTM的滚动轴承故障诊断[J].电子测量技术,2023,46(05):72-77.DOI:10.19651/j.cnki.emt.2210775.

🌈4 Python代码实现

http://www.lryc.cn/news/93808.html

相关文章:

  • OpenText Exceed TurboX(ETX)—— 适用于 UNIX、Linux 和 Windows 的远程桌面解决方案
  • 【人工智能】— 逻辑回归分类、对数几率、决策边界、似然估计、梯度下降
  • k8s pod “cpu和内存“ 资源限制
  • datagrip 连接 phoenix
  • 黑客入侵的常法
  • VB报警管理系统设计(源代码+系统)
  • Redis入门 - Redis Stream
  • 微服务中常见问题
  • 更新删除清理购物车
  • 基于Intel NUC平台的字符设备陀螺仪GX5-25驱动程序
  • 建立小型医学数据库(总结)
  • Git学习笔记
  • vue面试题1. 请说下封装 vue 组件的过程?2. Vue组件如何进行传值的?3. Vue 组件 data 为什么必须是函数?4. 讲一下组件的命名规范
  • Docker使用记录
  • OpenCV(图像处理)-基于Python-形态学处理-开运算、闭运算、顶帽、黑帽运算
  • chatgpt赋能python:Python支持跨平台软件开发
  • 哈工大计算机网络课程网络层协议详解之:CIDR与路由聚集
  • C++ 教程(19)——日期 时间
  • React 应用 Effect Hook 函数式中操作生命周期
  • C代码程序实现扫雷游戏纯代码版本
  • ai代写---怎么在ubutnu服务器中安装mqtt
  • 【设计模式与范式:行为型】63 | 职责链模式(下):框架中常用的过滤器、拦截器是如何实现的?
  • Kendo UI for jQuery---03.组件___网格---02.开始
  • 初识Telegraf、InfluxDB和Grafana铁三角形成的监控可视化解决方案
  • 【哈佛积极心理学笔记】第20课 幸福与幽默
  • 设计模式-责任链模式
  • 不变的是需求,变化的是解决方法和工具:探讨iPaaS与ESB的差异
  • 网络解析----faster rcnn
  • modbus TCP协议讲解及实操
  • 既有内销又有外贸,多样性外贸业务管理解决方案