当前位置: 首页 > news >正文

遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型教程

详情点击链接:遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型教程

一:平台及基础开发平台

·GEE平台及典型应用案例;

·GEE开发环境及常用数据资源;

·ChatGPT、文心一言等GPT模型

·JavaScript基础;

·GEE遥感云重要概念与典型数据分析流程;

 GEE基本对象、矢量和栅格对象可视化、属性查看,API查询、基本调试等平台。

二:GEE基础知识与ChatGPT等AI模型交互

·影像基本运算与操作:数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取;影像掩码、裁剪和镶嵌等;

·要素基本运算与操作:几何缓冲区,交、并、差运算等;

·集合对象操作:循环迭代(map/iterate)、合并Merge、联合(Join);

·数据整合Reduce包括影像与影像集整合,影像合成、影像区域统计与域统计,分组整合与区邻域统计,影像集线性回归分析等;

·机器学习算法:包括监督(随机森林、CART、SVM、决策树等)与非监督(wekaKMeans、wekaLVQ等)分类算法,分类精度评估等;

·数据资产管理:包括本地端矢量和栅格数据上传、云端矢量和栅格数据下载、统计结果数据导出等;

·绘图可视化:包括条形图、直方图、散点图、时间序列等图形绘制。
 ·GPT模型交互:结合上述基本知识点和ChatGPT等AI工具进行交互演示,包括辅助答疑、代码生成与修正等技巧。

1)Landsat、Sentinel-2影像批量自动去云和阴影

2)联合Landsat和Sentinel-2批量计算植被指数和年度合成

3)研究区可用影像数量和无云观测数量统计分析

4)中国区域年度NDVI植被数合成及年度最绿DOY时间查找

5)时间序列光学影像数据的移动窗口平滑

6)分层随机抽样及样本导出、样本本地评估与数据上传云端

中国近40年降雨量变化趋势分析

案例一:洪涝灾害监测

基于Sentinel-1 雷达等影像,以典型洪涝灾害为例监测受灾区域。案例内容包括多源影像数据处理和不同水体识别算法构建,如OSTU全局自动分割与局部自适应阈值法,以及采用不同方式确定受灾区域,受灾面积统计与可视化输出等。

案例二:洪水敏感性和风险模

结合ESA10m分辨率土地覆盖产品、地形(海拔与坡度)、MERIT全球水文数据、JRC地表水数据产品等空间数据集,借助云平台计算不同地类与开阔水域的距离,最近排水系统上方的高度 (HAND) 和降雨频率(降雨强度和持续时间的代表)作为模拟洪灾敏感性的输入参数,再应用加权线性组合WLC方法绘制洪灾敏感性分布图。内容涉及不同数据产品再分类分级、欧几里得距离计算、影像集map循环和分析建模等。

案例三:水体质量监测

联合近十年的Landsat 8/9、JRC地表水产品,使用如NDSSI归一化差异悬浮泥沙指数、NDTI归一化差分浊度指数等来监测水集水区水质变化情况,统计集水区域逐月水质变化情况。涉及时间序列影像预处理、植被指数计算、逐月逐年影像合成、影像集Reducer操作、空值过滤与作图等。

案例四:河道轮廓监测

展示Earth Engine在河流水文学和地貌学中的应用。具体演示如何使用云平台区分河流和其它水体,进行基本的形态分析,提取河流的中心线和宽度,检测河流形态随时间的变化。涉及开源程序包调用、RivWidthCloud关键代码解读、时间序列影像处理、水体遥感识别和数据导出。

案例五:地下水变化监测

利用GRACE重力卫星的观测数据来评估大型河流流域地下水储量的变化,包括应用遥感估计的总蓄水异常、陆地表面模型输出GLDAS和现场观测结果来解决地下水蓄不变化。涉及使用GRACE绘制总蓄水量变化、蓄水趋势和解决河流流域地下水储量的变化等,知识点包括影像集过滤、集合Join、map循环、趋势分析、可视化等。

案例六:红树林遥感制图

联合Sentinel-1/2多源遥感影像和机器学习算法绘制红树林分布图。涉及光学和雷达数据处理、机器学习算法应用、反演精度评估、变量重要性分析、结果可视化、栅格与矢量转换等内容,将演示如何利用红树林的生境特征信息(如地形、与大海相连等)对分类结果进行精细处理,实现高精度分布图的绘制。

 

http://www.lryc.cn/news/91833.html

相关文章:

  • 什么是文件描述符以及重定向的本质和软硬链接(Linux)
  • LVM逻辑卷元数据丢失恢复案例 —— 筑梦之路
  • Java技术规范概览
  • 【OpenMMLab AI实战营第二期】二十分钟入门OpenMMLab笔记
  • docker-compose单机容器集群编排
  • CentOS7 安装Gitlab
  • Mysql InnoDB的Buffer Pool
  • SMTP简单邮件传输协议(C/C++ 发送电子邮件)
  • uploads靶场通关(1-11关)
  • 6.1黄金探底回升是否到顶,今日多空如何布局
  • 自定义ViewGroup实现流式布局
  • Git版本控制
  • 若依之权限处理
  • 华为OD机试真题 Java 实现【矩阵最大值】【2023 B卷 100分】,附详细解题思路
  • ModuleNotFoundError: No module named ‘transformers_modules.chatglm-6b_v1‘的解决方案
  • MMPretrain代码课
  • Selenium自动化程序被检测为爬虫,怎么屏蔽和绕过
  • Nvidia Jetson Orin:开发技巧
  • 为什么需要 git 和 相关的小知识
  • (详解)vue中实现主题切换的三种方式
  • 英国皇家植物园采用机器学习预测植物抗疟性,将准确率从 0.46 提升至 0.67
  • 基于Locust实现MQTT协议服务的压测脚本
  • AURIX TC3XX Cached PFLASH与Non-Cached PFLASH的区别
  • uniapp开发小程序-显示左滑删除效果
  • FPGA 的数字信号处理:Verilog 实现简单的 FIR 滤波器
  • 使用粒子群优化算法(PSO)辨识锂电池二阶RC模型参数(附MATLAB代码)
  • 如何利用地面控制点实现倾斜摄影三维模型数据的几何坐标变换和纠正?
  • 设计规则之里氏替换原则
  • 【叠高高】叠蛋糕游戏的微信小程序开发流程详解
  • 收集关键词的方法有哪些?(如何查找精准的行业流量关键词)