当前位置: 首页 > news >正文

MarkDown中公式的编辑

MarkDown中公式的编辑

  • 生成目录
  • 积分
  • 插入编号
  • 常见希腊字母大小写
  • 分式
  • 括号
  • 求和
  • 积分
  • 连乘
  • 根式
  • 三角函数
  • 运算符
  • 集合运算
  • 箭头
  • 逻辑运算符
  • 约等于
  • 向量
  • 绝对值

申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计1077字,阅读大概需要1分钟
更多学习内容, 欢迎关注我的个人公众号:不懂开发的程序猿

生成目录

在文档开头第一行单独输入 [TOC]

积分

\Gamma(z)=\int_0\infty t^{z-1}e^{-t}dt\,

Γ(z)=∫0∞tz−1e−tdt.\Gamma(z)=\int_0\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

插入编号

y=x^2\tag{1}

y=x2(1)y=x^2\tag{1} y=x2(1)

常见希腊字母大小写

\Alpha \alpha \beta \Beta \Gamma \gamma \Delta \delta \Eta \eta \Theta \theta \Lambda \lambda \Pi \pi \Sigma \sigma \Omega \omega \Psi \psi \Phi \phi

AαβBΓγΔδHηΘθΛλΠπΣσΩωΨψΦϕ\Alpha \alpha \beta \Beta \Gamma \gamma \Delta \delta \Eta \eta \Theta \theta \Lambda \lambda \Pi \pi \Sigma \sigma \Omega \omega \Psi \psi \Phi \phi AαβBΓγΔδHηΘθΛλΠπΣσΩωΨψΦϕ

分式

\frac{a+b+c}{d+e+f}

a+b+cd+e+f\frac{a+b+c}{d+e+f} d+e+fa+b+c

括号

\{x\} \langle x \rangle \lceil x \rceil \lfloor x \rfloor 

{x}⟨x⟩⌈x⌉⌊x⌋\{x\} \langle x \rangle \lceil x \rceil \lfloor x \rfloor {x}xxx

求和

\sum^{x=n}_{x=1}

∑x=1x=n\sum^{x=n}_{x=1} x=1x=n

积分

\int_{x=1}^{x=5}
\iint_{x=1}^{x=2}
\iiint_{x=1}^{x=3}

∫x=1x=5∬x=1x=2∭x=1x=3\int_{x=1}^{x=5} \iint_{x=1}^{x=2} \iiint_{x=1}^{x=3} x=1x=5x=1x=2x=1x=3

连乘

\prod_{i=1}^{i=n}

∏i=1i=n\prod_{i=1}^{i=n} i=1i=n

根式

\sqrt{a+b}
\sqrt[3] {\frac xy}

a+bxy3\sqrt{a+b} \sqrt[3] {\frac xy} a+b3yx

三角函数

\arctan x \sin x

arctan⁡xsin⁡x\arctan x \sin x arctanxsinx

运算符

\lt \gt \le \ge \ne

<>≤≥≠\lt \gt \le \ge \ne <>≤≥=

集合运算

\cup \cap \subset \subseteq \subsetneq \supset \in \emptyset \varnothing

∪∩⊂⊆⊊⊃∈∅∅\cup \cap \subset \subseteq \subsetneq \supset \in \emptyset \varnothing ⊂⊆⊃∈

\to \rightarrow \leftarrow \Rightarrow \Leftarrow

箭头

→→←⇒⇐\to \rightarrow \leftarrow \Rightarrow \Leftarrow →→←⇒⇐

逻辑运算符

\land \forall \exist \top \bot \vdash \vDash

∧∀∃⊤⊥⊢⊨\land \forall \exist \top \bot \vdash \vDash ∀∃⊤⊥

约等于

\approx

≈\approx

向量

\hat \theta \overline x \vec x \overrightarrow {xyz} \dot x

θ^x‾x⃗xyz→x˙\hat \theta \overline x \vec x \overrightarrow {xyz} \dot x θ^xxxyzx˙

绝对值

\vert x \vert

∣x∣\vert x \vert x

–end–

http://www.lryc.cn/news/8601.html

相关文章:

  • 解决jupyter以及windows系统中pycharm编译器画图的中文乱码问题大全
  • 06 OpenCV 阈值处理、自适应处理与ostu方法
  • RFC7519规范-JWT - json web token
  • 移动机器人设计与实践课程大纲
  • Lesson 7.2 Mini Batch K-Means与DBSCAN密度聚类
  • 11.Dockerfile最佳实践
  • 【企业云端全栈开发实践-1】项目介绍及环境准备、Spring Boot快速上手
  • 5-HT2A靶向药物|适应症|市场销售-上市药品前景分析
  • HTTPS协议原理---详解
  • Pytest学习笔记
  • Fuzz概述
  • 区块链知识系列 - 系统学习EVM(四)-zkEVM
  • Leetcode.2341 数组能形成多少数对
  • C++复习笔记10
  • leaflet 纯CSS的marker标记,不用图片来表示(072)
  • Elasticsearch:使用 intervals query - 根据匹配项的顺序和接近度返回文档
  • 无法决定博客主题的人必看!如何选择类型和推荐的 5 种选择
  • 数字化转型的成功模版,珠宝龙头曼卡龙做对了什么?
  • 转换矩阵、平移矩阵、旋转矩阵关系以及python实现旋转矩阵、四元数、欧拉角之间转换
  • 中国地图航线图(echarjs)
  • Python正则表达式中group与groups的用法详解
  • c++练习题7
  • MySQL学习
  • C语言(强制类型转换)
  • 搭建hadoop高可用集群(二)
  • CentOS升级内核-- CentOS9 Stream/CentOS8 Stream/CentOS7
  • 【基础篇】一文掌握css的盒子模型(margin、padding)
  • 重生之我是赏金猎人-漏洞挖掘(十一)-某SRC储存XSS多次BypassWAF挖掘
  • Wails简介
  • 滑动窗口 AcWing (JAVA)