QT+OpenGL光照
QT+OpenGL光照
本篇完整工程见gitee:QtOpenGL 对应点的tag,由turbolove提供技术支持,您可以关注博主或者私信博主
颜色
现实生活中看到的物体的颜色并不是这个物体真正拥有的颜色,而是它所反射的颜色
太阳光能被看见的白光是多找演的的组合
颜色的数据化的由红色,绿色和蓝色三个分量组成,他们通常被缩写为RGB
例如:珊瑚红色
QVector3D color(1.0f, 0.5f, 0.31f);
上图颜色的代码展示
// 灯光颜色
QVector3D lightColor(1.0f, 1.0f, 1.0f);
// 珊瑚红色
QVector3D toyColor(1.0f, 0.5f, 0.31f);
QVector3D result = lightColor * toyColor; // 分量相乘,不是点乘也不是叉乘
代码展示:
light.frag
#version 330 core
out vec4 FragColor;
uniform vec3 lightColor;
void main()
{FragColor = vec4(lightColor, 1.0);
}
light.vert
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aTexCord;uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position = projection * view * model * vec4(aPos, 1.0);
}
void TurboOpenGLWidget::paintGL()
{QMatrix4x4 model;QMatrix4x4 view;float time = m_time.elapsed() / 50.0;model.rotate(time, 1.0f, 5.0f, 0.0f);glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glEnable(GL_DEPTH_TEST);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);shader_program_.bind();glBindVertexArray(VAO);QMatrix4x4 projection;projection.perspective(camera_.getZoom(), float(width() / height()), 0.1, 100);shader_program_.setUniformValue("projection", projection);view = camera_.getViewMatrix();switch(shape_){case Rect:shader_program_.setUniformValue("model", model);shader_program_.setUniformValue("view", view);for(const auto &item: cubePositions){model.setToIdentity();model.translate(item);model.rotate(time, 1.0, 5.0, 0.5);shader_program_.setUniformValue("model", model);glDrawArrays(GL_TRIANGLES,0,36);}break;}glBindVertexArray(0);glBindVertexArray(lightVAO);light_shader_program_.bind();light_shader_program_.setUniformValue("projection", projection);light_shader_program_.setUniformValue("model", model);light_shader_program_.setUniformValue("view", view);model.setToIdentity();model.translate(lightPos);model.rotate(1.0, 1.0, 5.0, 0.5);model.scale(0.2);light_shader_program_.setUniformValue("model", model);glDrawArrays(GL_TRIANGLES,0,36);update();
}
效果展示
冯氏光照模型
冯氏光照模型的主要结构有三个:
- 环境光(ambient)
- 即使在黑暗情况下,通常也仍然有一些光亮
- 漫反射(diffuse)
- 模拟光源对物体的方向性影响
- 镜面反射(specular)
- 模拟有光泽物体表面上出现的亮点
Iphong=ka⋅Iambient+∑i=1numLightsIi⋅(kd(L^i⋅N^)+ks⋅(R^i⋅V^)nshiny)I_{phong} = k_a\cdot I_{ambient} + \sum_{i = 1}^{numLights}I_i\cdot (k_d(\hat L_i\cdot \hat N) + k_s\cdot (\hat R_i \cdot \hat V)^{n^{shiny}}) Iphong=ka⋅Iambient+i=1∑numLightsIi⋅(kd(L^i⋅N^)+ks⋅(R^i⋅V^)nshiny)
其中kakdksk_a k_d k_skakdks是系数
环境光代码:
#version 330 core
out vec4 FragColor;
uniform vec3 objectColor;
uniform vec3 lightColor;
void main()
{float ambientStrength = 0.2;vec3 ambient = ambientStrength * lightColor;vec3 result = ambient * objectColor;FragColor = vec4(result, 1.0);
}
向上面代码,如果我们只有环境光,会是如下效果,并不是完全黑的。
漫反射代码:
计算漫反射光照需要:
- 法向量:一个垂直于顶点表面的向量
- 定向的光线:作为光源的位置与片段的位置之间的向量差的方向向量;为了计算这个光线,我们需要光的位置向量和片段的位置向量
片段着色器:
#version 330 core
out vec4 FragColor;uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;in vec3 Normal;
in vec3 fragPos;void main()
{// ambientfloat ambientStrength = 0.1;vec3 ambient = ambientStrength * lightColor;// diffusevec3 norm = normalize(Normal);vec3 lightDir = normalize(lightPos - fragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = diff + lightColor;vec3 result = (ambient + diffuse) * objectColor;FragColor = vec4(result, 1.0);
}
镜面反射代码:
片段着色器:
#version 330 core
out vec4 FragColor;uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;in vec3 Normal;
in vec3 fragPos;void main()
{// ambientfloat ambientStrength = 0.1;vec3 ambient = ambientStrength * lightColor;// diffusevec3 norm = normalize(Normal);vec3 lightDir = normalize(lightPos - fragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = diff * lightColor;// specularfloat specularStrength = 0.5;vec3 viewDir = normalize(viewPos - fragPos);vec3 reflectDir = reflect(-lightDir, norm);float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);vec3 specular = specularStrength * spec * lightColor;vec3 result = (ambient + diffuse + specular) * objectColor;FragColor = vec4(result, 1.0);
}
法向量
-
如果模型矩阵执行了不等比例的缩放,顶点的改变导致法向量不再垂直与表面。
-
修复这个行为的诀窍是使用一个为法向量专门定制的模型矩阵。这个矩阵称之为法线矩阵
Normal = mat3(transpose(inverse(model))) * aNormal;