当前位置: 首页 > news >正文

46.在ROS中实现global planner(2)

前文实现了一个global planner的模板,并且可以工作,本文将实现astar算法,为后续完成一个astar global planner做准备

1. AStar简介

1.1 AStar

Astar算法是一种图形搜索算法,常用于寻路。Astar算法原理网上可以找到很多,简单的说就是,从起点开始,向外发散,再去其中每个点到终端的估计距离最短的,继续循环上次步骤,直到到达目标点。

1.2 启发函数

估算距离(f)=距离起点距离(G)+距离终点的距离(H)

显然G是已知的,

  • 第一次从起点开始,G当然是0,
  • 向外发散也就是上下左右,距离起点当然是1,也就是其父节点的G+1

H 是距离目标点的距离,我们就是要规划路径,怎么找到距离目标有多远,其实这个距离是估计理想距离,当没有障碍物的时的距离,也就是直线距离

这里的直线距离又有两种方式表示

  • 曼哈顿距离
    x+yx+y x+y
  • 欧式距离
    x2+y2\sqrt{x^2 + y^2} x2+y2

显然网格计算适合使用曼哈顿距离的,其计算消耗要小很多

2. 实现过程

2.1 数据结构

上面简单提到实现过程,下面我们先定义数据结构, 我们需要保存当前已经搜索的节点,同时需要找到最小的f值,然后在该节点进行继续搜索和添加

  • 节点定义

class Grid {public:Point parent_point_;Point point_;float g_;float h_;  // f = g + h
};

节点定义比较简单,也就是当前点坐标,父节点坐标,g,h值

  • open list
    需要保存当前已经搜索点的列表,由于下次搜索有需要搜有f最小值,我们定义一个有限队列,这样我们取top就可以得到最小f的节点
struct greater {
bool operator()(const Grid& g1, const Grid& g2) const {float f1 = g1.h_ + g1.g_;float f2 = g2.h_ + g2.g_;return f1 > f2 || (f1 == f2 && g1.g_ < g2.g_);
}
};
std::priority_queue<Grid, std::vector<Grid>, greater> open_list_;

2.2 邻域

邻域定义较简单,定义为相对该点的偏移即可

  std::vector<Point> neighbors_;// 四邻域neighbors_.emplace_back(-1, 0);neighbors_.emplace_back(1, 0);neighbors_.emplace_back(0, -1);neighbors_.emplace_back(0, 1);// 八领域再加上下面neighbors_.emplace_back(-1, -1);neighbors_.emplace_back(1, 1);neighbors_.emplace_back(1, -1);neighbors_.emplace_back(-1, 1);

2.3 搜索实现

2.3.1 搜索过程

简单概括就是搜索过程就是不断最小的f值的节点的邻域,直到到达终点

伪代码如下

open_list.push(start);while(!open_list_.empty()) {// 取最前面的也就是最小的f节点Grid grid = open_list.top();open_list.pop();// 直到当前搜索点 为终点,终止循环if (grid.point == end.point) {return true;}// 循环这个节点的邻居V节点, 分别计算g h, 同时把这些节点添加到open_listfor (neighbor:neighbors) {Grid current;current.g_ = grid.g_ + 1current.h_ = calc_h(grid, neighbor, end); // 计算邻域的hcurrent.parent_point_ = grid.point;  // 更新父节点if (!(current in open_list)) {// 如果该点已经不在open list中则添加open_list.push(current);else {// 如果该点已经存在open list中 则根据V计算结果确认是否需要更新float f = current.g_ + current.h_;open_list[current.point].g_ = current.g_ ;open_list[current.point].h_ = current.h_ ;open_list[current.point].parent_point_ = grid.point;  // 更新父节点}}
}

2.3.2 得到路径

grid结构可以看出来,其实相当于一个链表结构,找到路径后,只需要从end循环即可得到路径

bool GetPathFromGrid(const Point& start_point, const Point& end_point, std::vector<Point>& path) {path.clear();path.push_back(end_point);int start_index;bool ret = Point2Index(start_point, start_index);if (!ret) {return false;}int index;Point point = end_point;ret = Point2Index(point, index);if (!ret) {return false;}while (index != start_index) {point = all_grid_[index].parent_point_;path.push_back(point);Point2Index(point, index);}return true;
}

3. 测试验证

3.1 输入

为了方便我们直接读取png图,这样我们直接编辑图就可以直接用于测试,

   // 使用opencv直接读取png图片cv::Mat mat = cv::imread("../map/map_demo.png", cv::IMREAD_GRAYSCALE);// 为了保持习惯 我们反转下, 值255认为障碍物(读取的图片255是白色)cv::threshold(mat, mat, 128, 255, CV_THRESH_BINARY_INV);

3.2 显示

为了方便我们观察过程,我们设计一个函数用于显示规划和过程,为了简便我们使用opencv窗口

void Display(const cv::Mat& map_data,    // 传入grid mapcv::Point begin,           // 起点cv::Point end,                // 终点const std::vector<cv::Point>& path,  // 输出的路径const std::vector<cv::Point>& close_list  // 已经完成搜索的点);

4. 测试

  • 输入地图地图

  • 测试结果
    plan

http://www.lryc.cn/news/8134.html

相关文章:

  • 05- 泰坦尼克号海难生死预测 (机器学习集成算法) (项目五)
  • 【python百炼成魔】python运算符的使用与输入输出函数
  • uniapp实现app检查更新与升级-uni-upgrade-center详解
  • 公司项目引入这种方式,开发应用真是又快又准!
  • virtuoso数据库介绍
  • linux高级命令之编辑器 vim
  • 分布式光伏储能系统的优化配置方法(Matlab代码实现)
  • Grafana loki部署及使用及问题处理方法(超详细)
  • vue项目如何使用 SheetJS(xlsx)插件?
  • 项目管理工具dhtmlxGantt甘特图入门教程(九):支持哪些数据格式(上篇)
  • iView Table合并单元格(行、列)
  • 如何用P6软件编制项目进度计划(下)
  • 环境配置完整指导——Installing C++ Distributions of PyTorch
  • 深度学习——自注意力机制和位置编码(笔记)
  • 内网渗透(三十)之横向移动篇-利用远控工具向日葵横向移动
  • 自动化测试中,该如何高效管理测试数据?
  • Qt中项目A调用另一个项目B的方法汇总
  • 【项目精选】基于Javaee的影视创作论坛的设计与实现(视频+论文+源码)
  • 深入【虚拟列表】动态高度、缓冲、异步加载... Vue实现
  • Windows 11 + WSL(ubuntu 20.04) + CLion(2022.3) 编译OpenJDK12
  • Freemarker 语法精粹
  • 使用Benchto框架对Trino进行SQL性能对比测试
  • Redis之哨兵模式
  • Selenium自动化测试Python二:WebDriver基础
  • 蓝桥杯模块学习17——AT24C02存储器(深夜学习——单片机)
  • netty
  • Django项目部署-uWSGI
  • jhipster自动生成java代码的方法
  • LeetCode 82. 删除排序链表中的重复元素 II
  • tensorflow gpu环境安装