tensorflow gpu环境安装
查看本电脑支持的最高cuda版本:nvidia-smi
在~/.condarc修改conda 源:
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/
show_channel_urls: true
ssl_verify: false
#如下命令可以查看cudnn8的各个子版本与cuda版本的关系:conda search cudnn=8 --info
conda create -n tensorflow_gpu3 python=3.7 cudnn=7.6.5 cudatoolkit=10.2
conda activate tensorflow_gpu3
pip install tensorflow-gpu==2.11.0
验证是否安装成功
进入python环境:
import tensorflow as tf
tf.config.list_physical_devices('GPU')