当前位置: 首页 > news >正文

基于MATLAB的MIMO信道估计(附完整代码与分析)

目录

一. 介绍

二. MATLAB代码

三. 运行结果与分析


一. 介绍

本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。

有关MIMO的介绍可看转至此篇博客:

MIMO系统模型构建_唠嗑!的博客-CSDN博客

在所有无线通信中,信号通过信道会出现失真,或者会添加各种噪声。正确解码接收到的信号就需要消除信道施加的失真和噪声。为了弄清信道的特性,就需要信道估计。

信道估计有很多不同的方法,但是通用的流程可概括如下:

  1. 设置一个数学模型,利用信道矩阵搭建起发射信号和接收信号之间的关系;
  2. 发射已知信号(通常称为参考信号或导频信号)并检测接收到的信号;
  3. 通过对比发送信号和接收信号,确定信道矩阵中的每个元素。

二. MATLAB代码

一共有四个代码,包含三个函数代码和一个主运行代码。

主运行代码用来产生最后的图像

(1)main.m文件代码

%由于信道数据随机产生,每次运行出的图像可能有略微差异%初始化
close all;
clear all;%%设定仿真参数rng('shuffle'); %产生随机化种子,也可以使用另一函数randn('state',sum(100*clock));%设定蒙特卡洛仿真的数目
nbrOfMonteCarloRealizations = 1000;nbrOfCouplingMatrices = 50; %相关矩阵数目Nt = 8; %发射天线的数量,训练序列的长度
Nr = 4; %接收天线的数量%训练的总功率
totalTrainingPower_dB = 0:1:20; %单位为dB
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %转为线性范围%最优化算法
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');%比较不同的信道估计算法 
%实用蒙特卡洛仿真法
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MMSE估计法
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %启发训练下的MMSE估计法
average_MSE_MVU_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MVU估计法
average_MSE_onesided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %单边线性估计法 
average_MSE_twosided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %双边线性估计法%随机信道统计量下的迭代
for statisticsIndex = 1:nbrOfCouplingMatrices%产生Weichselberger模型下的耦合矩阵V%元素均来自卡方分布(自由度为2)V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;V = Nt*Nr*V/sum(V(:)); %将矩阵Frobenius范数设为 Nt x Nr.%计算耦合矩阵的协方差矩阵R = diag(V(:));R_T = diag(sum(V,1)); %在Weichselberger模型下,计算发射端的协方差矩阵R_R = diag(sum(V,2)); %在Weichselberger模型下,计算接收端的协方差矩阵%使用MATLAB内置自带的优化算法,计算MMSE估计法下最优的训练功率分配trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower)); %每个训练序列的功率分配向量for k = 1:length(totalTrainingPower) %遍历每个训练序列的功率分配trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt; %初始设定功率均相等%使用fmincon函数来最优化功率分配%最小化MSE,所有功率均非负trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);end%计算功率分配[eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend'); %计算和整理特征值[~,inversePermutation] = sort(permutationorder); %记录特征值的orderq_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));for k = 1:length(totalTrainingPower) %遍历每个训练功率alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)'; %计算拉格朗日乘子的不同值optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0); %找到拉格朗日乘子的αq_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2); %使用最优的α计算功率分配endq_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:); %通过重新整理特征值来确定最终的功率分配%计算均匀功率分配q_uniform = (ones(Nt,1)/Nt)*totalTrainingPower;%蒙特卡洛仿真初始化vecH_realizations = sqrtm(R)*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生信道 vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生噪声%对于每种估计方法计算MSE和训练功率for k = 1:length(totalTrainingPower)%MMSE估计法:最优训练功率分配P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr)); %计算有效功率矩阵average_MSE_MMSE_estimator_optimal(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSEH_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MMSE_estimator_optimal(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%MMSE估计法:启发式训练功率分配MMSE P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr));  %计算有效训练矩阵average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSEH_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%MVY估计法: 最优均匀训练功率分配P_training = diag(sqrt(q_uniform(:,k))); %均匀功率分配P_tilde = kron(transpose(P_training),eye(Nr));  %计算有效训练矩阵P_tilde_pseudoInverse = kron((P_training'/(P_training*P_training'))',eye(Nr)); %计算有效训练矩阵的伪逆average_MSE_MVU_estimator(k,statisticsIndex,1) = Nt^2*Nr/totalTrainingPower(k); %计算MSEH_hat = P_tilde_pseudoInverse'*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MVU_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%One-sided linear 估计法: 最优训练功率分配又被称为 "LMMSE 估计法" P_training = diag(sqrt(q_MMSE_heuristic(:,k))); %使用最优功率分配来计算训练矩阵 P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵average_MSE_onesided_estimator(k,statisticsIndex,1) = trace(inv(inv(R_T)+P_training*P_training'/Nr)); %计算MSEAo = (P_training'*R_T*P_training + Nr*eye(Nt))\P_training'*R_T; %计算one-sided linear估计法中的矩阵A0 H_hat = kron(transpose(Ao),eye(Nr))*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_onesided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) );  %使用蒙特卡洛仿真来计算MS%Two-sided linear 估计法: 最优训练功率分配P_training = diag(sqrt(q_uniform(:,k))); %计算训练矩阵,均匀功率分配P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵R_calE = sum(1./q_uniform(:,k))*eye(Nr); %计算协方差矩阵average_MSE_twosided_estimator(k,statisticsIndex,1) = trace(R_R-(R_R/(R_R+R_calE))*R_R); %计算MSEC1 = inv(P_training); %计算矩阵C1C2bar = R_R/(R_R+R_calE); %计算C2bar矩阵H_hat = kron(transpose(C1),C2bar)*(P_tilde*vecH_realizations + vecN_realizations);average_MSE_twosided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSendend%挑选训练功率的子集
subset = linspace(1,length(totalTrainingPower_dB),5);normalizationFactor = Nt*Nr; %设定MSE标准化因子为trace(R), 标准化MSE为从0到1.%使用理论MSE公式画图
figure(1); hold on; box on;plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,1),2)/normalizationFactor,'b:','LineWidth',2);plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,1),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,1),2)/normalizationFactor,'r-','LineWidth',1);plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,1),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,1),2)/normalizationFactor,'ko-','LineWidth',1);legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,1),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,1),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,1),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,1),2)/normalizationFactor,'ko','LineWidth',1);set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);title('Results based on theoretical formulas');%使用蒙特卡洛仿真画理论运算图
figure(2); hold on; box on;plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,2),2)/normalizationFactor,'b:','LineWidth',2);
plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,2),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,2),2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,2),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,2),2)/normalizationFactor,'ko-','LineWidth',1);legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,2),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,2),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,2),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,2),2)/normalizationFactor,'ko','LineWidth',1);set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);title('Results based on Monte-Carlo simulations');

包含每行具体代码的解释

(2)三个函数文件

function [deviation,powerAllocation]=functionLagrangeMultiplier(eigenvaluesTransmitter,totalPower,k,alpha)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation. 
%INPUT:
%eigenvaluesTransmitter = Vector with the active eigenvalues at the
%                         transmitter side
%totalPower             = Total power of the training sequence
%k                      = Vector with k parameter values 
%alpha                  = Langrange multiplier value
%
%OUTPUT:
%deviation              = Difference between available power and used power
%powerAllocation        = Training power allocation 
%Compute power allocation 
powerAllocation = sqrt(8*(1./alpha(:))*eigenvaluesTransmitter'/3).*cos(repmat((-1).^k*pi/3,[length(alpha) 1])-atan(sqrt(8*(1./alpha(:))*(eigenvaluesTransmitter.^3)'/27-1))/3)-repmat(1./eigenvaluesTransmitter',[length(alpha) 1]);%Deviation between total available power and the power that is used
deviation = abs(totalPower-sum(powerAllocation,2));
function MSE = functionMSEmatrix(R_diag,q_powerallocation,B)
%Compute the MSE for estimation of the channel matrix for a given training
%power allocation. 
%INPUT:
%R_diag            = Nt Nr x Nt Nr diagonal covariance matrix
%q_powerallocation = Nt x 1 vector with training power allocation
%B                 = Length of the training sequence.
%
%OUTPUT:
%MSE               = Mean Squared Error for estimation of the channel matrixP_tilde = kron(diag(sqrt(q_powerallocation)),eye(B));MSE = trace(R_diag - R_diag*(P_tilde'/(P_tilde*R_diag*P_tilde'+eye(length(R_diag))))*P_tilde*R_diag);
function MSE = functionMSEnorm(eigenvaluesTransmitter,eigenvaluesReceiver,powerAllocation)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation. 
%INPUT:
%eigenvaluesTransmitter = Nt x 1 vector with eigenvalues at the
%                         transmitter side
%eigenvaluesReceiver    = Nr x 1 vector with eigenvalues at the
%                         receiver side
%powerAllocation        = Nt x 1 vector with training power allocation
%
%OUTPUT:
%MSE               = Mean Squared Error for estimation of the squared normMSE = sum(sum(((eigenvaluesTransmitter*eigenvaluesReceiver').^2 + 2*(powerAllocation.*eigenvaluesTransmitter.^3)*(eigenvaluesReceiver').^3)./(1+(powerAllocation.*eigenvaluesTransmitter)*eigenvaluesReceiver').^2));

注意:

  • 此MIMO发射天线为8,接收天线为4;
  • 三个函数文件的命名需要与函数保持一致;
  • 先运行函数文件,再运行main主文件;
  • 函数文件出现变量数报错是正常现象;
  • 运行出来有两个图,选择任意一个图即可。

三. 运行结果与分析

分析:

  1. 横向看,当训练功率增加时,均方误差(MSE)在减小,符合信道估计的基本逻辑;
  2. 纵向对比,MMSE(optimal)》MMSE(heuristic)》one-sided linear》two-side linear>MVU

》代表左边优于右边,每一个位置代表一种信道估计方法

http://www.lryc.cn/news/7732.html

相关文章:

  • Python代码游戏————星球大战
  • java向Word模板中替换书签数据,插入图片,插入复选框,插入Word中表格的行数据,删除表格行数据
  • Java基础知识快速盘点(二)
  • 企业降本增效的催化剂:敏捷迭代
  • MySQL入门篇-MySQL高级窗口函数简介
  • 什么是 API(应用程序接口)?
  • 如何在外网访问内网的 Nginx 服务?
  • vue2中defineProperty和vue3中proxy区别
  • 将bean注入Spring容器的五种方式
  • C生万物 | 常量指针和指针常量的感性理解
  • python 打包工具 pyinstaller和Nuitka区别
  • Python解题 - CSDN周赛第28期
  • DNS记录类型有哪些,分别代表什么含义?
  • ICLR 2022—你不应该错过的 10 篇论文(上)
  • HydroD 实用教程(三)环境数据
  • 第四章 统计机器学习
  • Redis第一讲
  • Java面试题-消息队列
  • 基于离散时间频率增益传感器的P级至M级PMU模型的实现(Matlab代码实现)
  • 9个相见恨晚的提升办公效率的网站!
  • java的双亲委派模型-附源码分析
  • Docker 笔记
  • 用户认证-cookie和session
  • UUID的弊端以及雪花算法
  • 使用netty+springboot打造的tcp长连接通讯方案
  • 【正点原子FPGA连载】第十章PS SYSMON测量温度电压实验 摘自【正点原子】DFZU2EG_4EV MPSoC之嵌入式Vitis开发指南
  • AcWing《蓝桥杯集训·每日一题》—— 1460 我在哪?
  • AcWing《蓝桥杯集训·每日一题》—— 3729 改变数组元素
  • 如何熟练掌握Python在气象水文中的数据处理及绘图【免费教程】
  • Leetcode详解JAVA版