当前位置: 首页 > news >正文

Games102 学习笔记

Games 102

P2 数据拟合

拟合数据的好坏

  • 分段线性插值函数y=f1(x)y=f_1(x)y=f1(x),数据误差为0,只有C0C_0C0连续。
  • 光滑插值函数y=f2(x)y=f_2(x)y=f2(x),数据误差为0,可能被Noice带歪,导致函数性质不好,预测而不可靠
  • 逼近拟合函数y=f3(x)y=f_3(x)y=f3(x),允许一定的误差

三部曲方法论

  • 到那找:确定某个函数集合/空间
  • 找那个:度量哪个函数是好的=确定loss
  • 怎么找:求解或优化
    • 如果转化为系数的方程组是欠定的(有无穷多解),则修正模型:Lasso、岭回归、稀疏正则项

多项式插值定理

  • 拉格朗日多项式
  • 牛顿插值多项式
  • 病态问题
    • 数据微笑的变化可能会导致插值结果变化较大
  • 函数相互抵消
    • 单项式,从低次幂到高次幂占据的重要性优先级依次下降。
    • 使用正交多项式基
  • 结论
    • 多项式插值不稳定
    • 振荡现象:多项式随着插值点数的增加而摆动

多项式逼近

  • 为什么做逼近
    • 数据包含噪声
    • 追求更紧凑的表达
    • 计算简单、更稳定
  • 最小二乘逼近
    • argminf∈span(B)∑j=1m(f(xj)−yj)2\underset{f\in span(B)}{argmin}\sum\limits_{j=1}^{m}(f(x_j)-y_j)^2fspan(B)argminj=1m(f(xj)yj)2

函数空间及基函数

  • Bernstein多项式逼近
    • 基函数:bn,j=Cnjxj(1−x)n−jb_{n,j} = C_n^jx^j(1-x)^{n-j}bn,j=Cnjxj(1x)nj
  • 优势
    • 正性、权性(和为1)->凸包性
    • 变差缩减性
    • 递归线性求解方法
    • 细分性

RBF函数插值/逼近

  • RBF函数的一维形式即为Gauss函数
    • gμ,σ(x)=12πe−(x−μ)22σ2g_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}gμ,σ(x)=2π1e2σ2(xμ)2
  • RBF函数
    • f(x)=b0+∑i=1nbigi(x)f(x)=b_0+\sum\limits_{i=1}^n b_ig_i(x)f(x)=b0+i=1nbigi(x)

从另一个角度来看拟合函数

  • Gauss拟合函数
    • 一般的Gauss函数表达为标准Gauss函数的形式
      • gμ,σ(x)=12πe−(x−μ)22σ2=12πe−12(xσ−μσ)2=g0,1(ax+b)g_{\mu,\sigma}(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x}{\sigma}-\frac{\mu}{\sigma})^2}=g_{0,1}(ax+b)gμ,σ(x)=2π1e2σ2(xμ)2=2π1e21(σxσμ)2=g0,1(ax+b)
      • a=1σ,b=μσa=\frac{1}{\sigma},b=\frac{\mu}{\sigma}a=σ1,b=σμ
      • 这样就可以同时优化μ\muμσ\sigmaσ
      • f(x)=b0+∑i=1nbigi(x)f(x) = b_0+\sum_{i=1}^{n}b_ig_i(x)f(x)=b0+i=1nbigi(x)->f(x)=w0+∑i=1nwig0,1(aix+bi)f(x)=w_0+\sum_{i=1}^nw_ig_{0,1}(a_ix+b_i)f(x)=w0+i=1nwig0,1(aix+bi)

P3 参数曲线拟合

多元函数

http://www.lryc.cn/news/6302.html

相关文章:

  • 知识图谱基本知识点以及应用场景
  • IDEA中常用的快捷键
  • 朗润国际期货招商:桥水基金四季度投资组合
  • Linux管道命令(pipe)全
  • mybatis条件构造器(一)
  • 车联网之电子围栏中ConnectStreamed应用【二十】
  • 临时文件tempfile
  • vue3封装数值动态递增组件
  • JavaWeb_RequestResponse
  • C语言刷题——“C”
  • 【刷题】搜索——BFS:城堡问题(The Castle)
  • 深度学习——torch相关函数用法解析
  • ubuntu 20使用kubeadm安装k8s 1.26
  • 低代码开发平台|制造管理-生产过程管理搭建指南
  • python对多个csv文件进行合并(表头需一致)
  • Salesforce Apex调用邮件模板
  • windows本地开发Spark[不开虚拟机]
  • 一文教你快速估计个股交易成本
  • Leetcode—移除元素、删除有序数组中的重复项、合并两个有序数组
  • 面试(十)大疆 安全开发 C++1面
  • 短信链接跳转微信小程序
  • 吉林电视台启用乾元通多卡聚合系统广电视频传输解决方案
  • Linux常用命令1
  • 【C++进阶】一、继承(总)
  • AttributeError: module ‘lib‘ has no attribute ‘OpenSSL_add_all_algorithms
  • Python实现视频自动打码功能,避免看到羞羞的画面
  • 说说Knife4j
  • Java学习笔记-03(API阶段-2)集合
  • 「3」线性代数(期末复习)
  • 【CSDN竞赛】27期题解(Javascript)