当前位置: 首页 > news >正文

第四章:大模型(LLM)】07.Prompt工程-(5)self-consistency prompt

第四章:大模型(LLM)

第七部分:Prompt 工程

第五节:Self-Consistency Prompt


1. 概念

Self-Consistency Prompt(自洽提示)是一种在思维链(Chain-of-Thought, CoT)基础上的改进方法。其核心思想是:

  • 不是依赖单一推理链的结果,而是让模型在同一个问题下生成多个推理路径

  • 通过对这些不同推理路径的最终答案进行投票或统计,选择出现频率最高、最合理的结果,提升整体推理的鲁棒性和准确性

这一方法尤其适用于复杂推理、多步计算的任务,如数学题、逻辑推理、因果推断等。


2. 工作流程

Self-Consistency Prompt 的基本流程如下:

  1. 设计带有思维链的 prompt
    引导模型逐步思考并输出推理过程。

  2. 采样多条推理路径

    • 设置模型在生成时使用采样方法(如 temperature > 0),让模型输出多种可能的推理链。

    • 例如同一道题,让模型生成 10 次推理过程,得到 10 个答案。

  3. 聚合结果

    • 收集每条推理链的最终答案。

    • 对答案进行多数投票,或选择最常见的结果作为最终答案。

  4. 输出最优解

    • 将结果返回给用户。


3. 示例

任务:计算“37 × 42”的结果。

  • 普通 CoT Prompt

    请一步步推理并计算:37 × 42
    

    可能输出:37 × 42 = 1554(正确)
    但有时会出现计算错误。

  • Self-Consistency Prompt

    1. 多次采样模型的推理路径:

      • 路径 1:37 × 42 = 1554 ✅

      • 路径 2:37 × 42 = 1454 ❌

      • 路径 3:37 × 42 = 1554 ✅

      • 路径 4:37 × 42 = 1554 ✅

      • 路径 5:37 × 42 = 1654 ❌

    2. 投票结果:

      • 1554 出现 3 次,为多数结果。

    3. 最终输出答案:1554


4. 优点与缺点
  • 优点

    • 提升推理任务的正确率

    • 减少单一路径计算错误的影响

    • 更符合人类“多次尝试再取最优解”的思维方式

  • 缺点

    • 计算成本增加,需要多次调用模型

    • 在简单问题上可能显得浪费算力


5. 应用场景
  • 数学计算与推理题

  • 逻辑推理/脑筋急转弯

  • 法律、医学等对准确性要求极高的领域

  • 需要避免单一推理链偏差的场景

http://www.lryc.cn/news/626298.html

相关文章:

  • 编译安装 Nginx
  • 从AI小智固件到人类智能:计算技术的层级跃迁
  • Linux-----《Linux系统管理速通:界面切换、远程连接、目录权限与用户管理一网打尽》
  • JavaScript 检查给定的四个点是否形成正方形(Check if given four points form a square)
  • [特殊字符] 小豆包 API 聚合平台:让 AI 接入更简单、更高效
  • PyTorch API 7
  • Linux 文件系统权限管理(补充)
  • pinctrl和gpio子系统实验
  • 前后端联合实现文件上传,实现 SQL Server image 类型文件上传
  • LeetCode热题100--101. 对称二叉树--简单
  • 【Kafka】常见简单八股总结
  • 力扣 30 天 JavaScript 挑战 第36天 第8题笔记 深入了解reduce,this
  • Linux Shell 常用操作与脚本示例详解
  • CNN 在故障诊断中的应用:原理、案例与优势
  • DAY 50 预训练模型+CBAM模块
  • 排查Redis数据倾斜引发的性能瓶颈
  • VScode ROS文件相关配置
  • 什么是大数据平台?大数据平台和数据中台有什么关系?
  • 网络间的通用语言TCP/IP-网络中的通用规则3
  • A股大盘数据-20250819 分析
  • 【PyTorch】单对象分割项目
  • Arthas 全面使用指南:离线安装 + Docker/K8s 集成 + 集中管理
  • Python入门第11课:Python网络请求入门,使用requests库轻松获取网页数据
  • Linux的基本操作
  • 浅看架构理论(一)
  • RK3568 Linux驱动学习——Linux设备树
  • 【SQL优化案例】统计信息缺失
  • 51单片机拼接板(开发板积木)
  • oracle官网下载jdk历史版本,jdk历史版本下载
  • Pandas数据预处理中缺失值处理