当前位置: 首页 > news >正文

AI大模型+Meta分析:助力发表高水平SCI论文

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,现已广泛应用于农林生态,资源环境等方面,成为Science、Nature论文的重要分析方法以ChatGPT为代表AI大语言模型带来了新一波人工智能浪潮,可以快速提升Meta分析的理解和应用效率。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。通过AI大模型全程助力Meta分析,从文献计量分析研究热点变化,寻找科学问题、R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析、Meta加权机器学习与非线性Meta分析等方面讲解,每个专题,每一部分结合多个典型案例实践,深受众多学员好评。

专题一、AI+Meta分析的选题与检索、寻找科学问题

1、AI大模型助力Meta分析的选题与文献检索

1)什么是Meta分析

2)Meta分析的选题策略

3)精确检索策略,如何检索全、检索准

4)文献的管理与清洗,如何制定文献纳入排除标准

5)文献数据获取技巧,研究课题探索及科学问题的提出

6)文献计量分析CiteSpace、VOSViewer、R bibliometrix研究热点分析

7)AI大模型的发展与底层逻辑

8)AI大模型的高级提问框架

9)AI大模型助力寻找科学问题

图片

专题二、AI助力Meta分析与R语言数据清洗及统计方法

2、Meta分析的常用软件/R语言基础及统计学基础

1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用

2)AI大模型助力,实现R语言基本操作与数据清洗

3)统计学基础和常用统计量计算(sd\se\CI)三大检验(T检验、卡方检验和F检验)

4)传统统计学与Meta分析的异同

5)R语言Meta分析常用包及相关插件讲解

自编程计算到调用Meta包meta、metafor、dmetar、esc、metasens、metamisc、meta4diaggemtcrobvisnetmetabrms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图

图片

专题三、AI+R语言Meta效应值计算与图形绘制

3、AI大模型助力R语言Meta效应值计算

1)R语言Meta分析的流程

2)各类meta效应值计算、自编程序和调用函数的对比连续资料的lnRR、MD与SMD分类资料的RR和OR

3)R语言meta包和metafor包的使用

4)如何用R基础包和ggplot2绘制漂亮的森林图

图片

专题四、如何利用AI+R语言Meta分析与回归分析、混合模型构建

4、AI大模型助力R语言Meta分析与混合效应模型(分层模型)构建

1)Meta分析的权重计算

2)Meta分析中的固定效应、随机效应

3)如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)

4)Meta回归和普通回归、混合效应模型的对比及结果分析

5)使用Rbase和ggplot2绘制Meta回归图

图片

专题五、AI+R语言Meta诊断分析进阶

5、AI大模型助力R语言Meta诊断进阶

1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)

2)异质性检验及发表偏移、漏斗图、雷达图发表偏倚统计检验

3)敏感性分析、增一法、留一法、增一法、Gosh图

4)风险分析、失安全系数计算

5)Meta模型比较和模型的可靠性评价

6)Bootstrap重采样方法评估模型的不确定性

7)如何使用多种方法文献中的SD、样本量等缺失值的处理

8)AI大模型复现Science最新Meta分析案例

图片

图片

专题六、AI+R语言Meta分析的不确定性及贝叶斯Meta分析

6、AI大模型助力R语言Meta分析的不确定性

1)网状Meta分析

2)贝叶斯理论和蒙特拉罗马尔可夫链MCMC

3)如何使用MCMC优化普通回归模型和Meta模型参数

4)R语言贝叶斯工具Stan、JAGS和brms

5)贝叶斯Meta分析及不确定性分析

图片

专题七、AI+Meta机器学习方法应用

7、AI大模型助力机器学习在Meta分析中的应用

1)机器学习基础以及Meta机器学习的优势

2)Meta加权随机森林(MetaForest)的使用

3)使用Meta机器学习和传统机器学习对文献中的大数据训练与测试

4)如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化

5)使用Meta机器学习进行驱动因子分析偏独立分析PDP

图片

专题八、讨论与答疑

1 练习

2 讨论与答疑

http://www.lryc.cn/news/621120.html

相关文章:

  • 部署文件到受管主机
  • 远程影音访问:通过 cpolar 内网穿透服务使用 LibreTV
  • 高效TypeScript开发:VSCode终极配置指南
  • 莫队 + 离散化 Ann and Books
  • 浏览器面试题及详细答案 88道(34-44)
  • 宝塔配置反向代理
  • 机器学习基础讲解
  • Linux:Samba 服务部署
  • 机器学习学习总结
  • 基于机器学习的文本情感极性分析系统设计与实现
  • 【深度学习】深度学习的四个核心步骤:从房价预测看机器学习本质
  • 机器学习--KNN算法
  • 减重小知识
  • AI幻觉终结之后:GPT-5开启的“可靠性”新赛道与开发者生存指南
  • 系统思考:转型困扰与突破
  • [ HTML 前端 ] 语法介绍和HBuilderX安装
  • 语义 HTML 的核心价值:提升 SEO 与 AI 理解
  • 解剖HashMap的put <五> JDK1.8
  • scikit-learn/sklearn学习|广义线性回归 Logistic regression的三种成本函数
  • Android POS应用在android运行常见问题及解决方案
  • 【数据结构初阶】--排序(一):直接插入排序,希尔排序
  • 前端框架选择之争:jQuery与Vue在现代Web开发中的真实地位-优雅草卓伊凡
  • 机器学习核心概念与实践笔记
  • spring mvc HttpMessageConverter 消息转换器
  • 【互动屏幕】解析双屏联动在数字展厅中的应用与价值
  • 系统升级后客户端缓存问题的无感知解决方案
  • [激光原理与应用-273]:理论 - 波动光学 - 光是电磁波,本身并没有颜色,可见光的颜色不过是人的主观感受
  • 网络组播技术详解
  • 考研408《计算机组成原理》复习笔记,第五章(3)——CPU的【数据通路】
  • 深入理解管道(上):PowerShell 管道参数绑定原理与高频范式