回归预测 | Matlab实现CNN-BiLSTM-self-Attention多变量回归预测
回归预测 | Matlab实现CNN-BiLSTM-self-Attention多变量回归预测
目录
- 回归预测 | Matlab实现CNN-BiLSTM-self-Attention多变量回归预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现CNN-BiLSTM融合自注意力机制多变量回归预测,CNN-BiLSTM-self-Attention;
MATLAB实现CNN-BiLSTM-self-Attention卷积神经网络-双向长短期记忆网络融合自注意力机制多变量回归预测。
2.data为数据集,格式为excel,7个输入特征,1个输出特征,多输入单输出回归预测,main.m是主程序;
3.评价指标包括:R2、MAE、MSE、RMSE和MAPE等;
4.运行环境matlab2023b及以上。
程序设计
- 完整代码私信回复回归预测 | Matlab实现CNN-BiLSTM-self-Attention多变量回归预测
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res =xlsread('data.xlsx');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
rng(0);
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
参考资料
[1] An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
[2] https://locuslab/TCN
[3] https://profiles/blogs/temporal-convolutional-nets-tcns-take-over
[3] Temporal Convolutional Networks for Action Segmentation
[4] http://t.cj.sina.com.cn/articles/view