当前位置: 首页 > news >正文

scikit-learn/sklearn学习|岭回归解读

【1】引言

前序学习进程中,对用scikit-learn表达线性回归进行了初步解读。
线性回归能够将因变量yyy表达成由自变量xxx、线性系数矩阵www和截距bbb组成的线性函数式:
y=∑i=1nwi⋅xi+b=wTx+by=\sum_{i=1}^{n}w_{i}\cdot x_{i}+b=w^T{x}+by=i=1nwixi+b=wTx+b实际上很多时候数据之间不一定是理想化的线性关系,所以需要对线性关系式进行修正,这个时候就可以考虑岭回归。

【2】岭回归的原理

岭回归是修正后的线性回归,所以描述岭回归,必须先会议线性回归。
在用scikit-learn表达线性回归中,我们在代码中使用了一个参数:均方误差。

【2.1】线性回归均方误差

对于线性回归,均方误差的计算式子为:
L(w,b)=∑i=1n(yi−yi^)2=∑i=1n(yi−(wTxi+b))2L(w,b)=\sum_{i=1}^{n}(y_{i}-\hat{y_{i}})^2=\sum_{i=1}^{n}(y_{i}-(w^Tx_{i}+b))^2L(w,b)=i=1n(yiyi^)2=i=1n(yi(wTxi+b))2在这里,yyy是第i个样本的真实值,y^\hat{y}y^是第i个样本的预测值。
线性回归的均方误差将真实值和预测值作差后求平方和即可。

【2.2】岭回归均方误差

岭回归相对于线性回归,均方误差的计算式子增加了对参数权重平方和的计算,称之为L2正则化惩罚项:
L(w,b)=∑i=1n(yi−yi^)2+α∑j=1mwj2=∑i=1n(yi−(wTxi+b))2+α∑j=1mwj2L(w,b)=\sum_{i=1}^{n}(y_{i}-\hat{y_{i}})^2+\alpha\sum_{j=1}^{m}w_{j}^{2}=\sum_{i=1}^{n}(y_{i}-(w^Tx_{i}+b))^2+\alpha\sum_{j=1}^{m}w_{j}^{2}L(w,b)=i=1n(yiyi^)2+αj=1mwj2=i=1n(yi(wTxi+b))2+αj=1mwj2在这里,yyy是第i个样本的真实值,y^\hat{y}y^是第i个样本的预测值。
新增加的L2正则化惩罚项α∑j=1mwj2\alpha\sum_{j=1}^{m}w_{j}^{2}αj=1mwj2包括两部分:
第一部分α>0\alpha>0α>0代表正则化强度,可以控制对第二项惩罚的力度;
第二部分∑j=1mwj2\sum_{j=1}^{m}w_{j}^{2}j=1mwj2是所有线性系数的平方和。
α\alphaα越大,惩罚项整体就会越大,这个时候往往需要将wjw_{j}wj调小,也就是通过调整wj→0w_{j}\rightarrow 0wj0来避免过度拟合;
α=0\alpha=0α=0,此时惩罚项不起作用,岭回归退化为线性回归。

【2.3】岭回归的意义

岭回归通过添加惩罚项解决了线性回归至少两个问题:
多重共线性,当变量之间高度相关时,在线性回归计算中可能获得极大的wjw_{j}wj,通过惩罚项可以将这些参数下降到较小的范围,使得模型对数据波动的敏感性降低,从而获得更加稳健的效果;
过拟合,当变量过多或者噪声过大时,线性回归可能过度拟合数据,惩罚项通过将线性系数wjw_{j}wj调小,让模型更倾向于关注整体趋势而非噪音。

【3】总结

岭回归和线性回归都是线性关系式的推演,但岭回归通过L2正则化惩罚项让线性系数wjw_{j}wj保持在合理且较小的范围,让回归模型更稳健、更准确。

http://www.lryc.cn/news/617739.html

相关文章:

  • 高并发场景下分布式ID生成方案对比与实践指南
  • Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
  • Mining of Real-world Hypergraphs part1-2 逐字翻译解读
  • react中父子数据流动和事件互相调用(和vue做比较)
  • 剑桥大学最新研究:基于大语言模型(LLM)的分子动力学模拟框架,是MD的GPT时刻还是概念包装?
  • 机器翻译:Bahdanau注意力和Luong注意力详解
  • HarmonyOS AI辅助编程工具(CodeGenie)概述
  • 鸿蒙flutter项目接入极光推送
  • golang包管理工具中 GOPATH 与 Go Modules 的区别总结
  • 新人如何简化学习Vue3文件
  • while循环结合列表或字典
  • YOLOv6深度解析:实时目标检测的新突破
  • 企业架构工具篇之ArchiMate的HelloWorld(2)
  • Eino中的两种应用模式:“单独使用”和“在编排中使用”
  • 软考架构师:数据库的范式
  • 分治-归并-912.排序数组-力扣(LeetCode)
  • Catalyst 日志记录(Logging)
  • 石材 × 设计:解锁永恒材质的四大灵感密码
  • 获取MaixPy系列开发板机器码——MaixHub 模型下载机器码获取方法
  • ESP32 配合上位机串口打印数据
  • 【Web 服务的铁三角架构】Flask、Nginx 与 Docker 的分工与协作
  • FFmpeg - 基本 API大全(视频编解码相关的)
  • macOS 搭建 Gitea 私有 Git 服务器教程
  • wed前端第三次作业
  • 算法训练营DAY57 第十一章:图论part07
  • 缓存的三大问题分析与解决
  • STM32蓝牙模块驱动开发
  • 第10节 大模型分布式推理典型场景实战与架构设计
  • 《算法导论》第 19 章 - 斐波那契堆
  • 【SpringBoot】持久层 sql 注入问题